Hyperfine Interactions

, Volume 95, Issue 1, pp 85–95 | Cite as

The external magnetic field dependence of RF splitting of57Fe hyperfine lines. NMR + Mössbauer double resonance experiment

  • F. G. Vagizov
Invited Contributions


We present the results of an experimental investigation of a RF splitting of57Fe hyperfine lines in the regime of NMR and Mössbauer double resonance. The experiments have been performed as a function of RF field intensity and static magnetic field magnitude. The intensity of the RF components and the separation between them are extremely sensitive to the frequency and amplitude of the RF magnetic field. The RF splitting of hyperfine lines is inversely proportional to the strength of the static magnetic field.


Magnetic Field Thin Film Experimental Investigation External Magnetic Field Field Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.D. Heiman, J.C. Walker and L. Pfeiffer, Phys. Rev. 184 (1969) 281; W. Meisel,Proc. Conf. on Mössbauer Spectroscopy, Dresden 1971, p. 157.CrossRefGoogle Scholar
  2. [2]
    Ya.B. Zeldovich, Usp. Fiz. Nauk 110 (1973) 139.Google Scholar
  3. [3]
    M.N. Hack and M. Hammermesh, Nuovo Cimento 19 (1961) 546.Google Scholar
  4. [4]
    H. Gabriel, Phys. Rev. 184 (1969) 359.CrossRefGoogle Scholar
  5. [5]
    A.V. Mitin. Sov. Phys. JETP 25 (1967) 1062.Google Scholar
  6. [6]
    Sh.Sh. Bashkirov and E.K. Sadykov, Sov. Phys. Sol. State 20 (1978) 1988.Google Scholar
  7. [7]
    A.Ya. Dzyublik, Ukrainskii fizicheskii gurnal 37 (1992) 930.Google Scholar
  8. [8]
    I. Tittonen, J. Javanainen, M. Lippmaa and T. Katila, Hyp. Int. 78 (1993) 397.CrossRefGoogle Scholar
  9. [9]
    G.J. Perlow,Proc. of Mössbauer Effect Conf, University of Illinois 1960, eds. H. Frauenfelder and H. Lustig; Phys. Rev. 172 (1968) 319.Google Scholar
  10. [10]
    E. Matthias, in:Hyperfine Interactions and Nuclear Radiations, eds. E. Matthias and D.A. Shirley (North-Holland, Amsterdam, 1968) p. 815.Google Scholar
  11. [11]
    N.D. Heiman, J.C. Walker and L. Pfeiffer, Phys. Rev. 184 (1969) 281.CrossRefGoogle Scholar
  12. [12]
    S.S. Yakimov, A.R. Mkrtchyan, V.N. Zarubin, K.V. Serbinov and V.V. Sergeev, Sov. Phys. JETP Lett. 26 (1977) 13.Google Scholar
  13. [12a]
    F.G. Vagjzov, R.A. Manapov and A.V. Mitin, Opt. Spektrosk. 51 (1981) 941.Google Scholar
  14. [13]
    V.K. Voitovetskii, S.M. Cheremisin, S.B. Sazonov, Phys. Lett. 83A (1981) 81.Google Scholar
  15. [14]
    F.G. Vagizov, Hyp. Int. 61 (1990) 1359.Google Scholar
  16. [15]
    I. Tittonen, M. Lippmaa, E. Ikonen, J. Linden and T. Katila, Phys. Rev. Lett. 69 (1992) 2815; Erratum 70 (1993) 1353.CrossRefGoogle Scholar
  17. [16]
    Yu.V. Shvyd'ko, K. Ebner, H.D. Ruter, J. Metge, E. Gerdau and A.I. Chumakov,Abstr. 4th Seeheim Workshop on Mössbauer Spectroscopy, 1994, p. 122.Google Scholar
  18. [17]
    M. Kopcevich, J. Phys. Chem. Solids 41 (1980) 631.CrossRefGoogle Scholar
  19. [18]
    F.G. Vagizov, Hyp. Int. 61 (1990) 1363.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • F. G. Vagizov
    • 1
    • 2
  1. 1.Kazan Physical-Technical InstituteRussian Academy of SciencesKazanRussia
  2. 2.Institute for Low Temperature and Structure ResearchPolish Academy of SciencesWroclawPoland

Personalised recommendations