Non-linear Doppler shift of the plasmon resonance in a grating-coupled drifting 2DEG

  • R. E. Tyson
  • R. J. Stuart
  • H. P. Hughes
  • J. E. F. Frost
  • D. A. Ritchie
  • G. A. C. Jones
  • C. Shearwood


We report experimental measurements and computer calculations of the plasmon resonances of two dimensional electron gases in the far-infrared which show the effects of laterally drifting the 2DEG. Coupling to radiation is achieved using an overlaid metal grating of submicron period, and its periodic screening effect splits the plasmon into upper and lower energy modes. For a symmetric grating profile the higher energy mode is non-radiative for a stationary 2DEG and a splitting is not observable, but when the 2DEG is laterally drifted under the grating, coupling to both modes can occur, and their Doppler shifts produce an observable splitting which increases with drift velocity. These Doppler shifts are not linear with drift velocity for low velocities, but approach asymptotically the expected linear shift with increasing drift velocity. Experimental results on 2DEGs at GaAs/AlGaAs heterojunctions compare well with theoretical calculations.

Key words

Plasmon 2DEG Lateral Drift Grating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ando T, Fowler A B and Stern F,Rev Mod Phys 54, 437 (1982)CrossRefGoogle Scholar
  2. [2]
    Batke E and Heitmann D,Infrared Phys 24, 189 (1984)CrossRefGoogle Scholar
  3. [3]
    Heitmann D,Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures, 151–173, Ed: Chamberlain J M et al, Plenum Press, New York (1990)Google Scholar
  4. [4]
    Stern F,Phys Rev Lett 18, 546 (1967)CrossRefGoogle Scholar
  5. [5]
    Chen J, Kempa K and Bakshi P,Phys Rev B 38, 10051 (1988)CrossRefGoogle Scholar
  6. [6]
    Gupta R and Ridley B K,Phys Rev B 39, 6208 (1989)CrossRefGoogle Scholar
  7. [7]
    Steele M C,Wave Interactions in Solid State Plasmas, McGraw-Hill Book Company, New York (1969)Google Scholar
  8. [8]
    Chaplik A V,Solid State Commun 65, 1589 (1988)Google Scholar
  9. [9]
    Allen S J, Tsui D C and Logan R A,Phys Rev Lett 38, 980 (1977)Google Scholar
  10. [10]
    Ager C D and Hughes H P,Solid State Commun 83, 627 (1992)Google Scholar
  11. [11]
    Ager C D, Wilkinson R J and Hughes H P,J Appl Phys 71, 1322 (1992)Google Scholar
  12. [12]
    Theis T N,Surf Sci 98, 515 (1980)CrossRefGoogle Scholar
  13. [13]
    Ager C D and Hughes H P,Phys Rev B 44, 13452 (1991)CrossRefGoogle Scholar
  14. [14]
    Das Sarma S and Stern F,Phys Rev B 32, 8442 (1985)CrossRefGoogle Scholar
  15. [15]
    Mackens Uet al, Phys Rev Lett 53, 1485 (1984)CrossRefGoogle Scholar
  16. [16]
    Zettler T and Kotthaus J P,Semicond Sci Technol 3, 413 (1988)CrossRefGoogle Scholar
  17. [17]
    Allen S Jet al, Physica 134 B, 332 (1985)Google Scholar
  18. [18]
    Drummond T Jet al, Electronics Letters 17, 545 (1981)Google Scholar
  19. [19]
    Masselink W T,Semicond Sci Technol 4, 503 (1989)CrossRefGoogle Scholar
  20. [20]
    Tsubaki Ket al, Solid State Commun 46, 517 (1983)CrossRefGoogle Scholar
  21. [21]
    Schubert E F and Ploog K,Appl Phys A 33, 183 (1984)CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • R. E. Tyson
    • 1
  • R. J. Stuart
    • 1
  • H. P. Hughes
    • 1
  • J. E. F. Frost
    • 1
  • D. A. Ritchie
    • 1
  • G. A. C. Jones
    • 1
  • C. Shearwood
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations