Numerical Algorithms

, Volume 2, Issue 2, pp 171–185 | Cite as

Some numerical results on best uniform rational approximation ofxα on [0,1]

  • Richard S. Varga
  • Amos J. Carpenter


Let α be a positive number, and letE n,n (xα;[0,1]) denote the error of best uniform rational approximation from π n,n toxα on the interval [0,1]. We rigorously determined the numbers {E n,n (xα;[0,1])} n =1/30 for six values of α in the interval (0, 1), where these numbers were calculated with a precision of at least 200 significant digits. For each of these six values of α, Richardson's extrapolation was applied to the products\(\{ e^{\pi \sqrt {4\alpha n} } E_{n,n} (x^\alpha ;[0,1])\} _{n = 1}^{30} \) to obtain estimates of
$$\lambda (\alpha ): = \mathop {\lim }\limits_{n \to \infty } e^{\pi \sqrt {4\alpha n} } E_{n,n} (x^\alpha ;[0,1]) (\alpha > 0).$$

These estimates give rise to two interesting new conjectures in the theory of rational approximation.

Subject classification

AMS (MOS) 41A20 41A50 


Rational approximation best approximation Remez algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.P. Brent, A FORTRAN multiple-precision arithmetic package, ACM Trans. Math. Soft. 4 (1978) 57–70.CrossRefGoogle Scholar
  2. [2]
    C. Brezinski,Algorithms d'Accélération de la Convergence (Éditions Technip, Paris, 1978).Google Scholar
  3. [3]
    A.P. Bulanov, Asymptotics for least deviation of |x| from rational functions, Math. USSR Sbornik 5 (1968) 275–290.Google Scholar
  4. [4]
    T. Ganelius, Rational approximation tox α on [0,1], Analysis Mathematica 5 (1979) 19–33.CrossRefGoogle Scholar
  5. [5]
    T. Ganelius, Degree of rational approximation, in:Lectures on Approximation and Value Distribution, pp. 9–78, Collection Séminaire de Mathématiques Supérieures, Volume 79 (Les Presses de l'Université de Montréal, Montréal, 1982).Google Scholar
  6. [6]
    A.A. Gonchar, Estimates of the growth of rational functions and some of their applications, Math. USSR Sbornik 1 (1967) 445–456.Google Scholar
  7. [7]
    H.L. Loeb, Approximation by generalized rationals, SIAM J. on Numer. Anal. 3 (1966) 34–55.CrossRefGoogle Scholar
  8. [8]
    G. Meinardus,Approximation of Functions: Theory and Numerical Methods (Springer-Verlag, New York, 1967).Google Scholar
  9. [9]
    D.J. Newman, Rational approximation to |x|, Michigan Math. J. 11 (1964) 11–14.CrossRefGoogle Scholar
  10. [10]
    E. Ya. Remez, Sur le calcul effectiv des polynômes d'approximation de Tchebichef, C.R. Acad. Sci. Paris 199 (1934) 337–340.Google Scholar
  11. [11]
    T.J. Rivlin,An Introduction to the Approximation of Functions (Blaisdell Publishing Co., Waltham, Mass., 1969).Google Scholar
  12. [12]
    H. Stahl, Best uniform rational approximation of |x| on [−1,1], Mat. Sbornik, to appear.Google Scholar
  13. [13]
    J. Tzimbalario, Rational approximation tox α, J. Approx. Theory 16 (1976) 187–193.CrossRefGoogle Scholar
  14. [14]
    R.S. Varga, A. Ruttan and A.J. Carpenter, Numerical results on best uniform rational approximation of |x| on [−1, +1], Mat. Sbornik 182 (No. 11) (1991) 1523–1541.Google Scholar
  15. [15]
    N.S. Vjacheslavov, On the uniform approximation of |x| by rational functions, Soviet Math. Dokl. 16 (1975) 100–104.Google Scholar
  16. [16]
    N.S. Vjacheslavov, On the approximation ofx α by rational functions, Math. USSR Izvestija 16 (1981) 83–101.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1992

Authors and Affiliations

  • Richard S. Varga
    • 1
  • Amos J. Carpenter
    • 2
  1. 1.Institute for Computational MathematicsKent State UniversityKentUSA
  2. 2.Dept. of Math. and Computer ScienceButler UniversityIndianapolisUSA

Personalised recommendations