Numerical Algorithms

, Volume 4, Issue 1, pp 65–99 | Cite as

Automatic solution of regular and singular vector Sturm-Liouville problems

  • Marco Marletta


This paper describes the algorithms and theory behind a new code for vector Sturm-Liouville problems. A new spectral function is defined for vector Sturm-Liouville problems; this is an integer valued function of the eigenparameter λ which has discontinuities precisely at the eigenvalues. We describe numerical algorithms which may be used to compute the new spectral function, and its use as amiss-distance function in a new code which solves automatically a large class of regular and singular vector Sturm-Liouville problems. Vector Sturm-Liouville problems arise naturally in quantum mechanical applications. Usually they are singular. The advantages of the author's code lie in its ability to solve singular problems automatically, and in the fact that the user may specify the required eigenvalue by its index.

Subject classifications

AMS(MOS) 34B25 65L15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.V. Atkinson,Discrete and Continuous Boundary Problems (Academic Press, New York, 1964).Google Scholar
  2. [2]
    F.V. Atkinson, A.M. Krall, G.K. Leaf and A. Zettl, On the numerical computation of eigenvalues of Sturm-Liouville problems with matrix coefficients, preprint (1987).Google Scholar
  3. [3]
    M.H. Alexander and D.E. Manolopoulos, A stable linear reference potential algorithm for solution of the quantum close-coupled equations in molecular scattering theory, J. Chem. Phys. 86 (1987), 2044–2050.Google Scholar
  4. [4]
    N. Dunford and J.T. Schwartz,Linear Operators, Part II (Wiley Interscience, New York, 1988).Google Scholar
  5. [5]
    G.H. Golub and C.F. Van Loan,Matrix Computations (North Oxford Academic, Oxford, 1983).Google Scholar
  6. [6]
    P. Hartman,Ordinary Differential Equations (Johns Hopkins University Press, 1973).Google Scholar
  7. [7]
    L.Gr. Ixaru, The error analysis of the algebraic method for solving the Schrödinger equation, J. Comput. Phys. 9 (1972) 159–163.Google Scholar
  8. [8]
    L.Gr. Ixaru, M.I. Christu and M.S. Popa, Choosing step-sizes for perturbative methods of solving the Schrödinger equation, J. Comput. Phys. 36 (1980) 170–181.Google Scholar
  9. [9]
    T. Kato,Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften 32 (Springer, 1980).Google Scholar
  10. [10]
    L. Greenberg, A. Prüfer method for calculating eigenvalues of self-adjoint systems of ordinary differential equations, Parts 1 and 2, Technical Report, Department of Mathematics, University of Maryland (August 1991).Google Scholar
  11. [11]
    P. Hartman,Ordinary Differential Equations (Wiley, New York, 1964).Google Scholar
  12. [12]
    V. Hutson and J.S. Pym,Applications of Functional Analysis and Operator Theory (Academic Press, London, 1980).Google Scholar
  13. [13]
    R.D. Levine, M. Shapiro and B.R. Johnson, Transition probabilities in molecular collisions: Computational studies of rotational excitation, J. Chem. Phys. 52 (1970) 1755–1766.Google Scholar
  14. [14]
    J.V. Lill, T.G. Schmalz and J.C. Light, Imbedded matrix Green's functions in atomic and molecular scattering theory, J. Chem. Phys. 78 (1983) 4456–4463.Google Scholar
  15. [15]
    M. Marletta, Numerical tests of the SLEIGN software for Sturm-Liouville problems, ACM Trans. Math. Software 17 (1991) 481–490.Google Scholar
  16. [16]
    M. Marletta, Theory and implementation of algorithms for Sturm-Liouville computations, Ph.D. Thesis, Royal Military College of Science (1991).Google Scholar
  17. [17]
    M. Marletta and J.D. Pryce, Automatic solution of Sturm-Liouville problems using the Pruesss method, J. Comp. Appl. Math. 39 (1992) 57–78.Google Scholar
  18. [18]
    V.S. Melezhik, I.V. Puzynin, T.P. Puzynina and L. Somov, Numerical solution of a system of integrodifferential equations arising from the quantum-mechanical three-body problem with Coulomb interaction, J. Comput. Phys. 54 (1984) 221–236.Google Scholar
  19. [19]
    F. Mrugala and D. Secrest, The generalised log- derivative method for inelastic and reactive collisions, J. Chem. Phys. 78 (1983) 5954–5961.Google Scholar
  20. [20]
    L.I. Ponomarev, I.V. Puzynin, T.P. Puzynina and L. Somov, The scattering problem in quantum mechanics as an eigenvalue problem, Ann. Phys. 110 (1986) 274–286.Google Scholar
  21. [21]
    W.T. Reid,Ordinary Differential Equations (Wiley, New York, 1971).Google Scholar
  22. [22]
    J.D. Pryce, Error control of phase-function shooting methods for Sturm-Liouville problems, IMA J. Numer. Anal. 6 (1986) 103–123.Google Scholar
  23. [23]
    W.T. Reid,Sturmian Theory of Ordinary Differential Equations, Applied Mathematical Sciences 31 (Springer, 1980).Google Scholar
  24. [24]
    F. Rellich, Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung, Math. Ann. 122 (1950/51) 343–368.Google Scholar

Copyright information

© J.C. Baltzer A.G. Science Publishers 1993

Authors and Affiliations

  • Marco Marletta
    • 1
  1. 1.Department of MathematicsUniversity of LeicesterLeicesterEngland

Personalised recommendations