Skip to main content
Log in

Automatic solution of regular and singular vector Sturm-Liouville problems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper describes the algorithms and theory behind a new code for vector Sturm-Liouville problems. A new spectral function is defined for vector Sturm-Liouville problems; this is an integer valued function of the eigenparameter λ which has discontinuities precisely at the eigenvalues. We describe numerical algorithms which may be used to compute the new spectral function, and its use as amiss-distance function in a new code which solves automatically a large class of regular and singular vector Sturm-Liouville problems. Vector Sturm-Liouville problems arise naturally in quantum mechanical applications. Usually they are singular. The advantages of the author's code lie in its ability to solve singular problems automatically, and in the fact that the user may specify the required eigenvalue by its index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.V. Atkinson,Discrete and Continuous Boundary Problems (Academic Press, New York, 1964).

    Google Scholar 

  2. F.V. Atkinson, A.M. Krall, G.K. Leaf and A. Zettl, On the numerical computation of eigenvalues of Sturm-Liouville problems with matrix coefficients, preprint (1987).

  3. M.H. Alexander and D.E. Manolopoulos, A stable linear reference potential algorithm for solution of the quantum close-coupled equations in molecular scattering theory, J. Chem. Phys. 86 (1987), 2044–2050.

    Google Scholar 

  4. N. Dunford and J.T. Schwartz,Linear Operators, Part II (Wiley Interscience, New York, 1988).

    Google Scholar 

  5. G.H. Golub and C.F. Van Loan,Matrix Computations (North Oxford Academic, Oxford, 1983).

    Google Scholar 

  6. P. Hartman,Ordinary Differential Equations (Johns Hopkins University Press, 1973).

  7. L.Gr. Ixaru, The error analysis of the algebraic method for solving the Schrödinger equation, J. Comput. Phys. 9 (1972) 159–163.

    Google Scholar 

  8. L.Gr. Ixaru, M.I. Christu and M.S. Popa, Choosing step-sizes for perturbative methods of solving the Schrödinger equation, J. Comput. Phys. 36 (1980) 170–181.

    Google Scholar 

  9. T. Kato,Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften 32 (Springer, 1980).

  10. L. Greenberg, A. Prüfer method for calculating eigenvalues of self-adjoint systems of ordinary differential equations, Parts 1 and 2, Technical Report, Department of Mathematics, University of Maryland (August 1991).

  11. P. Hartman,Ordinary Differential Equations (Wiley, New York, 1964).

    Google Scholar 

  12. V. Hutson and J.S. Pym,Applications of Functional Analysis and Operator Theory (Academic Press, London, 1980).

    Google Scholar 

  13. R.D. Levine, M. Shapiro and B.R. Johnson, Transition probabilities in molecular collisions: Computational studies of rotational excitation, J. Chem. Phys. 52 (1970) 1755–1766.

    Google Scholar 

  14. J.V. Lill, T.G. Schmalz and J.C. Light, Imbedded matrix Green's functions in atomic and molecular scattering theory, J. Chem. Phys. 78 (1983) 4456–4463.

    Google Scholar 

  15. M. Marletta, Numerical tests of the SLEIGN software for Sturm-Liouville problems, ACM Trans. Math. Software 17 (1991) 481–490.

    Google Scholar 

  16. M. Marletta, Theory and implementation of algorithms for Sturm-Liouville computations, Ph.D. Thesis, Royal Military College of Science (1991).

  17. M. Marletta and J.D. Pryce, Automatic solution of Sturm-Liouville problems using the Pruesss method, J. Comp. Appl. Math. 39 (1992) 57–78.

    Google Scholar 

  18. V.S. Melezhik, I.V. Puzynin, T.P. Puzynina and L. Somov, Numerical solution of a system of integrodifferential equations arising from the quantum-mechanical three-body problem with Coulomb interaction, J. Comput. Phys. 54 (1984) 221–236.

    Google Scholar 

  19. F. Mrugala and D. Secrest, The generalised log- derivative method for inelastic and reactive collisions, J. Chem. Phys. 78 (1983) 5954–5961.

    Google Scholar 

  20. L.I. Ponomarev, I.V. Puzynin, T.P. Puzynina and L. Somov, The scattering problem in quantum mechanics as an eigenvalue problem, Ann. Phys. 110 (1986) 274–286.

    Google Scholar 

  21. W.T. Reid,Ordinary Differential Equations (Wiley, New York, 1971).

    Google Scholar 

  22. J.D. Pryce, Error control of phase-function shooting methods for Sturm-Liouville problems, IMA J. Numer. Anal. 6 (1986) 103–123.

    Google Scholar 

  23. W.T. Reid,Sturmian Theory of Ordinary Differential Equations, Applied Mathematical Sciences 31 (Springer, 1980).

  24. F. Rellich, Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung, Math. Ann. 122 (1950/51) 343–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marletta, M. Automatic solution of regular and singular vector Sturm-Liouville problems. Numer Algor 4, 65–99 (1993). https://doi.org/10.1007/BF02142741

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02142741

Subject classifications

Navigation