Advertisement

Numerical Algorithms

, Volume 4, Issue 1, pp 1–24 | Cite as

Computing the real roots of a polynomial by the exclusion algorithm

  • Jean-Pierre Dedieu
  • Jean-Claude Yakoubsohn
Article

Abstract

We describe a new algorithm for localizing the real roots of a polynomialP(x). This algorithm determines intervals on whichP(x) does not possess any root. The remainder set contains the real roots ofP(x) and can be arbitrarily small.

Keywords

Exclusion polynomial, root 

Subject classification

AMS 26C10 65H05 12D10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Coleman, Algorithme de Weyl pour le calcul simultané des racines d'un polynôme, preprint, rapport de recherche, LMCIMAG, Université Joseph Fourier, Grenoble (1990).Google Scholar
  2. [2]
    J. Davenport, Computer algebra for cylindrical algebraic decomposition, TRITA-NA-8511, Department of Numerical Analysis and Computer Science, Royal Institute of Technology, S-100 44 Stockholm, Sweden.Google Scholar
  3. [3]
    J.P. Dedieu and J.C. Yakoubsohn, Localisation d'une variété algébrique réelle par l'algorithme d'exclusion, C. R. Acad. Sci. (Paris) 312 (1991) 1013–1016, and to appear in AAECC.Google Scholar
  4. [4]
    R. Garus and T. Kuppert, Computation of the smallest positive eigenvalue of a quadratic λ-matrix, Numer. Math. 57 (1990) 393–403.Google Scholar
  5. [5]
    P. Henrici,Applied and Computational Complex Analysis, vol. 1 (Wiley, New York, 1974).Google Scholar
  6. [6]
    P. Henrici and I. Gargantini, Uniformly convergent algorithms for the simultaneous approximation of all zeros of a polynomial, in:Constructive Aspects of the Fundamental Theorem of Algebra, eds. B. Dejon and P. Henrici (Wiley Interscience, 1969).Google Scholar
  7. [7]
    A.S. Householder,The Numerical Treatment of a Single Nonlinear Equation (McGraw-Hill, New-York, 1970).Google Scholar
  8. [8]
    G. Laureano, H. Lombardi, T. Recio and M.F. Roy, Spécialisation de la suite de Sturm et sousrésultants, to appear in J. Symb. Comput.Google Scholar
  9. [9]
    M. Marden, The geometry of the zeros of a polynomial in a complex variable, AMS (1949).Google Scholar
  10. [10]
    M. Petković,Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Lectures Notes 1387 (Springer, 1989).Google Scholar
  11. [11]
    F. Ronga, Connecting points in the complement of a smooth hypersurface of ℝn, Preprint, Université de Genève, Suisse (1989).Google Scholar
  12. [12]
    H. Weyl, Randbemerkungen zu Hauptproblemen der Mathematik, 2. Fundamentalsatz der Algebra und Grundlagen der Mathematik, Math. Z. 20 (1924) 131–150.Google Scholar

Copyright information

© J.C. Baltzer A.G. Science Publishers 1993

Authors and Affiliations

  • Jean-Pierre Dedieu
    • 1
  • Jean-Claude Yakoubsohn
    • 1
  1. 1.Laboratoire d'Analyse NumériqueUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations