Numerical Algorithms

, Volume 8, Issue 2, pp 269–291 | Cite as

An algorithm for the generalized symmetric tridiagonal eigenvalue problem

  • Kuiyuan Li
  • Tien-Yien Li
  • Zhonggang Zeng


In this paper we present an algorithm, parallel in nature, for finding eigenvalues of a symmetric definite tridiagonal matrix pencil. Our algorithm employs the determinant evaluation, split-and-merge strategy and Laguerre's iteration. Numerical results on both single and multiprocessor computers are presented which show that our algorithm is reliable, efficient and accurate. It also enjoys flexibility in evaluating a partial spectrum.


Eigenvalues multiprocessors matrix pencil 

AMS (MOS) subject classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Anderson et al.,LAPACK User's Guide (SIAM, Philadelphia, 1992).Google Scholar
  2. [2]
    A.E. Berger, J.M. Solomon and M. Ciment, Higher order accurate tridiagonal difference methods for diffusion convection equations, in:Advances in Computer Methods for Partial Differential Equations III, eds. R. Vichnevetsky and R.S. Stepleman (IMACS, 1978) pp. 322–330.Google Scholar
  3. [3]
    C.F. Borges and W.B. Gragg, A parallel divide and conquer algorithm for the generalized real symmetric definite tridiagonal eigenproblem, preprint, Naval Post-Graduate School (1992).Google Scholar
  4. [4]
    R.F. Boisvert, Families of higher order accurate discretizations of some elliptic problems, SIAM J. Sci. Stat. Comp. 2 (1981) 268–284.Google Scholar
  5. [5]
    L. Collatz,Numerical Treatment of Differential Equations (Springer, Berlin, 1960).Google Scholar
  6. [6]
    J.J.M. Cuppen, A divide-and-conquer method for the symmetric tridiagonal eigenproblem, Numer. Math. 36 (1981) 177–195.Google Scholar
  7. [7]
    J.J. Dongarra and D.C. Sorensen, A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comp. 8 (1987) 139–154.Google Scholar
  8. [8]
    G.H. Golub and Van Loan,Matrix Computations (The Johns Hopkins University Press, Baltimore, MD, 1989).Google Scholar
  9. [9]
    B. Grieves and D. Dunn Symmetric matrix methods for Schrödinger eigenvectors, J. Phys. A: Math. Gen. 23 (1990) 5479–5491.Google Scholar
  10. [10]
    W. Kahan, Notes on Laguerre's iteration, unpublished research notes (1992).Google Scholar
  11. [11]
    L. Kaufman, An algorithm for the banded symmetric generalized matrix eigenvalue problem, SIAM J. Matrix Anal. Appl. 14 (1993) 372–389Google Scholar
  12. [12]
    K. Li and T.Y. Li, An algorithm for symmetric tridiagonal eigenproblems — divide and conquer with homotopy continuation, SIAM J. Sci. Comp. 14 (1993) 735–751.Google Scholar
  13. [13]
    K. Li and T. Y. Li, A homotopy algorithm for a symmetric generalized eigenproblem, Numer. Algor. 4 (1993) 167–195.Google Scholar
  14. [14]
    T.Y. Li and Z. Zeng, Laguerre's iteration in solving the symmetric tridiagonal eigenproblem — revisited, SIAM J. Sci. Comp., to appear.Google Scholar
  15. [15]
    S-S. Lo, B. Phillipe and A. Sameh, A multiprocessor algorithm for the symmetric tridiagonal eigenvalue problems, SIAM J. Sci. Stat. Comp. 8 (1987) 155–165.Google Scholar
  16. [16]
    R.D. Pantazis and D.B. Szyld, A multiprocessor method for the solution of the generalized eigenvalue problem on an interval,Parallel Processing for Scientific Computing, Proc. 4th SIAM Conf., eds. J. Dongarra, P. Messina, D.G. Sorensen and R.G. Voigt (SIAM, Philadelphia, PA, 1990) pp. 36–41.Google Scholar
  17. [17]
    B.N. Parlett,The Symmetric Eigenvalue Problem (Prentice-Hall, Englenwood Cliffs, NJ, 1980).Google Scholar
  18. [18]
    B. Philippe and B. Vital, Parallel implementations for solving generalized eigenvalue problems with symmetric sparse matrices. App. Numer. Math. 12 (1993) 391–402.Google Scholar
  19. [19]
    Y.M. Ram and G.M.L. Gladwell, Constructing a finite-element model of a vibratory rod from eigendata, J. Sound Vibration 165 (1993).Google Scholar
  20. [20]
    C.J. Ribbens and C. Beattie, Parallel solution of generalized symmetric tridiagonal eigenvalue problem on shared memory multiprocessors, Technical Report TR 92-47, Department of Computer Science, Virginia Polytechnic Institute and State University (1992).Google Scholar
  21. [21]
    B.T. Smith et al.,Matrix Eigensystem Routines — EISPACK Guide, 2nd ed. (Springer, New York, 1976).Google Scholar
  22. [22]
    G. Strang and G. Fix,An Analysis of the Finite Element Method (Prentice-Hall, Englewood Cliffs, NJ, 1973).Google Scholar
  23. [23]
    C. Trefftz, P. McKinley, T.Y. Li and Z. Zeng, A scalable eigenvalue solver for symmetric tridiagonal matrices,Proc. 6th SIAm Conf. on Parallel Processing for Scientific Computing (SIAM, 1993) pp. 602–609.Google Scholar
  24. [24]
    W. Weaver, Jr. and P.R. Johnson,Finite Elements for Structural Analysis (Prentice-Hall, NJ, 1984).Google Scholar
  25. [25]
    J.H. Wilkinson,The Algebraic Eigenvalue Problem (Oxford University Press, Oxford, 1965).Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Kuiyuan Li
    • 1
  • Tien-Yien Li
    • 2
  • Zhonggang Zeng
    • 2
  1. 1.Department of Mathematics and StatisticsThe University of West FloridaPensacolaUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations