Numerical Algorithms

, Volume 6, Issue 2, pp 317–351 | Cite as

Construction of iteration functions for the simultaneous computation of the solutions of equations and algebraic systems

  • Anne-Mercedes Bellido


We construct iteration functions for the simultaneous computation of the solutions of a system of equations, with local quadratic convergence: they generalize to the multivariate case the well-known Weierstrass function for polynomials, which is expected to be globally convergent except on a zero-measured set of starting points. We clarify these functions using univariate interpolation. Both for polynomials and algebraic systems with real coefficients, we extend the conjecture of global convergence to the research of real roots or solutions.


Simultaneous resolution algebraic systems Newton method interpolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comp. 27 (1973) 339–344.Google Scholar
  2. [2]
    E. Angelova and K. Semerdzhiev, Methods for the simultaneous approximate derivation of the roots of algebraic, trigonometric and exponential equations, USSR Comput. Maths. Math. Phys. 22 (1982) 226–232.CrossRefGoogle Scholar
  3. [3]
    A.-M. Bellido, Construction de fonctions d'itération pour le calcul simultané des racines d'une équationf(s)=0, C.R. Acad. Sci. Paris (1992).Google Scholar
  4. [4]
    A.-M. Bellido, Doctoral dissertation, Université Paul Sabatier, Toulouse, France (1992).Google Scholar
  5. [5]
    E. Durand,Solutions Numériques des Équations Algébriques, vols. 1 and 2 (Masson, Paris, 1960).Google Scholar
  6. [6]
    A. Frommer, A unified approach to methods for the simultaneous computation of all zeros of generalized polynomials, Numer. Math. 54 (1988) 105–116.CrossRefGoogle Scholar
  7. [7]
    I.O. Kerner, Ein Gesamtschrittverfahren zur Berechnung von Nullstellen von Polynomen, Numer. Math. 8 (1966) 290–294.Google Scholar
  8. [8]
    D. Lazard, Stewart platforms and Gröbner bases, private communication (1992).Google Scholar
  9. [9]
    T.Y. Li, T. Sauer and J.A. Yorke, Numerical solution of a class of deficient polynomial systems. SIAM J. Numer. Anal. 24 (1987) 435–451.CrossRefGoogle Scholar
  10. [10]
    A.M. Ostrowski,Solution of Equations and Systems of Equations, 2nd ed. (Academic Press, 1966).Google Scholar
  11. [11]
    L. Pasquini and D. Trigante, A global method for simultaneous finding of polynomial roots, Math. Comp. 44 (1985) 135–149.Google Scholar
  12. [12]
    A. Piétrus, private communication (dissertation).Google Scholar
  13. [13]
    K. Weierstrass, Neuer Beweis des Fundamentalsatzes der Algebra,Mathematische Werke, vol. 3 (Mayer & Müller, Berlin, 1903) pp. 251–269.Google Scholar
  14. [14]
    W. Werner, On the simultaneous determination of polynomials roots, in:Iterative Solution of Nonlinear Systems of Equations, eds. R. Ansorge, Th. Meiss and W. Tornig, Lecture Notes in Mathematics Vol. 953 (Springer, Berlin, 1982) pp. 188–202.Google Scholar
  15. [15]
    J. H. Wilkinson and C. Reinsch,Linear Algebra, Handbook for Automatic Computation, vol. 2 (Springer, Berlin, 1971).Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Anne-Mercedes Bellido
    • 1
  1. 1.Laboratoire d'Analyse NumériqueUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations