Advertisement

Numerical Algorithms

, Volume 11, Issue 1, pp 255–269 | Cite as

Some convergence results for the generalized Padé-type approximants

  • Ana C. Matos
Article

Abstract

The aim of this paper is to give some convergence results for some sequences of generalized Padé-type approximants. We will consider two types of interpolatory functionals: one corresponding to Langrange and Hermite interpolation and the other corresponding to orthogonal expansions. For these two cases we will give sufficient conditions on the generating functionG(x, t) and on the linear functionalc in order to obtain the convergence of the corresponding sequence of generalized Padé-type approximants. Some examples are given.

Keywords

Orthogonal polynomials orthogonal expansions Hermite interpolation approximation 

AMS subject classification

41A05 41A20 42C10 42C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.A. Baker Jr. and P. Graves-Morris,Padé Approximants, Part II, Encyclopedia of Mathematics and its Applications (Addison Wesley, Reading, MA, 1981).Google Scholar
  2. [2]
    C. Brezinski,Biorthogonality and its Applications to Numerical Analysis (Marcel Dekker, New York, 1991).Google Scholar
  3. [3]
    P.J. Davis,Interpolation and Approximation (Dover, New York, 1975).Google Scholar
  4. [4]
    Z. Rocha, Applications de la théorie de la biorthogonalité, Thèse, Université des Sciences et Technologies de Lille (1994).Google Scholar
  5. [5]
    G. Szegö,Orthogonal Polynomials, American Mathematical Society, Colloquium Publications Vol. 23 (AMS, Providence, 1938).Google Scholar
  6. [6]
    J.L. Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain, Amercan Mathematical Society, Colloquium Publications Vol. 20 (AMS, Providence, 1969).Google Scholar

Copyright information

© J. C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Ana C. Matos
    • 1
  1. 1.Laboratoire d'Analyse Numérique et d'Optimisation, UFR IEEA-M3Université des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance

Personalised recommendations