Numerical Algorithms

, Volume 1, Issue 2, pp 207–221 | Cite as

A new presentation of orthogonal polynomials with applications to their computation

  • C. Brezinski
  • M. Redivo Zaglia


In this paper a new presentation of orthogonal polynomials is given. It is based on the introduction of two auxiliary sequences of arbitrary monic polynomials and it leads to a very simple derivation of the usual determinantal formulae for orthogonal polynomials and of their recurrence relations either in the definite or in the indefinite case. New expressions for the coefficients of these recurrence relations are obtained and they are compared to the usual ones from the point of view of their numerical stability. The qd-algorithm is also recovered very easily.

Subject classifications

AMS(MOS) 33A65 


Orthogonal polynomials recurrence relations qd-algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Brezinski,Padé-type Approximation and General orthogonal Polynomials, ISNM Vol. 50, (Birkhäuser, Basel, 1980).Google Scholar
  2. [2]
    C. Brezinski, Bordering methods and progressive forms for sequence transformations Zastosow. Mat. 20 (1990) 435–443.Google Scholar
  3. [3]
    C. Brezinski and M. Redivo Zaglia,Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam) to appear.Google Scholar
  4. [4]
    C. Brezinski, M. Redivo Zaglia and H. Sadok, A breakdown-free Lanczos type algorithm for solving linear systems, Numer. Math., to appear.Google Scholar
  5. [5]
    C. Brezinski and H. Sadok, Lanczos type methods for systems of linear equations, submitted.Google Scholar
  6. [6]
    A. Draux,Polynômes Orthogonaux Formels. Applications, LNM 974 (Springer-Verlag, Berlin, 1983).Google Scholar
  7. [6]
    V. N. Faddeeva,Computational Methods of Linear Algebra (Dover, New-York, 1959).Google Scholar
  8. [8]
    R. Fletcher, Conjugate gradient methods for indefinite systems, in:Numerical Analysis, ed. G.A. Watson, LNM 506 (Springer-Verlag, Berlin, 1976) pp. 73–89.Google Scholar
  9. [9]
    G.H. Golub and M.H. Gutknecht, Modified moments for indefinite weight functions, Numer. Math. 57 (1990) 607–624.Google Scholar
  10. [10]
    M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms. Parts I, II-s moreo, SIAm J. Matrix Anal. Appl., to appear.Google Scholar
  11. [11]
    P. Henrici,Applied and Computational Complex Analysis, Vol. 1, Wiley, New-York, 1974.Google Scholar
  12. [12]
    H. Rutishauser, Der Quotienten-Differenzen-Algorithms, Z. Angew. Math. Physik, 5 (1954) 233–251.Google Scholar
  13. [13]
    G. Szegö,Orthogonal Polynomials (American Mathematical Society, Providence, 1939).Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1991

Authors and Affiliations

  • C. Brezinski
    • 1
  • M. Redivo Zaglia
    • 2
  1. 1.Laboratoire d'Analyse Numérique et d'Optimisation, UFR IEEA-M3Université des Sciences et Techniques de Lille Flandres-ArtoisVilleneuve d'Ascq CedexFrance
  2. 2.Dipartimento di Elettronica e InformaticaUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations