Numerical Algorithms

, Volume 2, Issue 1, pp 39–61 | Cite as

Elementarym-harmonic cardinal B-splines

  • Christophe Rabut
Article

Abstract

We generalize the notion of B-spline to the thin plate splines and to otherd-dimensional polyharmonic splines as defined in [Duchon, [3]]; for regular nets, we give the main properties of these “B-splines”: Fourier transform, decay when ∥x∥ → ∞, stability, integration property, links between B-splines of different orders or of different dimensions and in particular link with the polynomial B-splines, approximation using B-splines... We show that, in some sense, B-splines may be considered as a regularized form of the Dirac distribution.

Subject classification

65D07 

Keywords

B-splines thin plate spline polyharmonic splines radial basis functions quasi-interpolant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Martin D. Buhmann, Multivariate interpolation with radial basis functions, University of Cambridge, DAMPT 1988/NA8, 1988.Google Scholar
  2. [2]
    Albert Cohen, Ondelettes, analyses multi-résolutions et traitement numérique du signal, Thèse, Université Paris IX Dauphine, 1990.Google Scholar
  3. [3]
    Jean Duchon, Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, RAIRO Analyse Numérique 10, no. 12 (1976) 5–12.Google Scholar
  4. [4]
    Nira Dyn and David Levin, Iterative solution of systems originating from integral equations and surface interpolation, SIAM, Numerical Analysis 20, no. 2 (1983) 377–390.CrossRefGoogle Scholar
  5. [5]
    I.M. Gelfand and N.I. Villenkin, Les Distributions, tome 4 (Dunod, 1967).Google Scholar
  6. [6]
    Robert L. Harder and Robert N. Demarais, Interpolation using surface splines, J. Aircraft 9 (1972) 189–191.Google Scholar
  7. [7]
    Ian Robert Hart Jackson, Radial basis functions methods for multivariate approximation, Thesis, University of Cambridge, 1988.Google Scholar
  8. [8]
    Wally R. Madych and S.A. Nelson, Polyharmonic cardinal splines, Journal of Approximation Theory 60, No. 2 (Febr. 1990) 141–156.CrossRefGoogle Scholar
  9. [9]
    Jean Meinguet, Multivariate interpolation at arbitrary points made simple. J. Appl. Math. Phys. (ZAMP) 30 (1979) 292–304.CrossRefGoogle Scholar
  10. [10]
    Charles Micchelli, Christophe Rabut and Florencio Utreras, Using the refinement equation for the construction of pre-wavelets III, elliptic splines, Numerical Algorithms 1, No. 4 (1991) 331–352.CrossRefGoogle Scholar
  11. [11]a.
    Christophe Rabut “B-splines polyharmoniques cardinales: Interpolation, quasi-interpolation, filtrage”, Thèse d'Etat, Université de Toulouse, 1990.Google Scholar
  12. [11]b.
    Christophe Rabut “How to build quasi-interpolants. Application to polyharmonic B-splines”,Curves and Surfaces, eds. P.S. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, 1991).Google Scholar
  13. [11]c.
    — High level m-harmonic cardinal B-splines”, Numerical Algorithms 2, No. 1 (1992) 63–84.Google Scholar
  14. [12]
    I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. 4 (1946) 45–99 and 112–141.Google Scholar
  15. [13]
    I.J. Schoenberg, Cardinal interpolation and spline functions, Journal of Approximation Theory 2 (1969) 167–206.CrossRefGoogle Scholar
  16. [14]
    I.J. Schoenberg, Cardinal spline interpolation, Regional Conference series in applied mathematics, SIAM, 1973.Google Scholar
  17. [15]
    Larry L. Schumaker,Spline Functions: Basic Theory (John Wiley & Sons, 1981).Google Scholar
  18. [16]
    Laurent Schwartz,Theorie des Distributions (Hermann, Paris, 1966).Google Scholar
  19. [17]
    Vo-Khac Khoan,Distributions, Analyse de Fourier, Opérateurs aux Dérivées Partielles, tome 2 (Vuibert, Paris, 1972).Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1992

Authors and Affiliations

  • Christophe Rabut
    • 1
  1. 1.Complexe scientifique de RangueilINSA-Centre de MathématiquesToulouse CedexFrance

Personalised recommendations