Numerical Algorithms

, Volume 9, Issue 2, pp 355–377 | Cite as

A program for solving the L2 reduced-order model problem with fixed denominator degree

  • W. Krajewski
  • A. Lepschy
  • M. Redivo-Zaglia
  • U. Viaro


A set of necessary conditions that must be satisfied by the L2 optimal rational transfer matrix approximating a given higher-order transfer matrix, is briefly described. On its basis, an efficient iterative numerical algorithm has been obtained and implemented using standard MATLAB functions. The purpose of this contribution is to make the related computer program available and to illustrate some significant applications.


Linear dynamic systems rational approximation L2 norm 

AMS subject classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.R. Aigrain and A.M. Williams, Synthesis of n-reactance networks for desired transient response, J. Appl. Phys. 20 (1949) 597–600.CrossRefGoogle Scholar
  2. [2]
    K.J. Åström,Introduction to Stochastic Control Theory (Academic Press, New York, 1970).Google Scholar
  3. [3]
    L. Baratchart, Recent and new results in rational L2 approximation, in:Modelling, Robustness and Sensitivity Reduction in Control Systems, ed. R.F. Curtain (Springer, Berlin, 1987) pp. 119–126.Google Scholar
  4. [4]
    L. Baratchart, M. Cardelli and M. Olivi, Identification and rational L2 approximation: a gradient algorithm, Automatica 27 (1991) 413–418.CrossRefGoogle Scholar
  5. [5]
    A.E. Bryson and A. Carrier, Second-order algorithm for optimal model order reduction, J. Guidance Control Dynam. 13 (1990) 887–892.MathSciNetGoogle Scholar
  6. [6]
    F.R. Gantmacher,The Theory of Matrices, Vol. 1 (Chelsea, New York, 1977).Google Scholar
  7. [7]
    W. Gawronski and J.N. Juang, Model reduction for flexible structures, Control Dyn. Syst. 36 (1990) 143–222.Google Scholar
  8. [8]
    D.C. Hyland and D.S. Bernstein, The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore, IEEE Trans. Auto. Contr. AC-30 (1985) 1201–1211.CrossRefGoogle Scholar
  9. [9]
    W. Krajewski, A. Lepschy, G.A. Mian and U. Viaro, On model reduction by L2-optimal pole retention, J. Franklin Inst. 327 (1990) 61–70.CrossRefMathSciNetGoogle Scholar
  10. [10]
    W. Krajewski, A. Lepschy and U. Viaro, Optimality conditions in multivariable L2 model reduction, J. Franklin Inst. 330 (1993) 431–439.CrossRefMathSciNetGoogle Scholar
  11. [11]
    C. P. Kwong, Optimal chained aggregation for reduced order modelling, Int. J. Control 35 (1982) 965–982.Google Scholar
  12. [12]
    L. Meier and D.G. Luenberger, Approximation of linear constant systems, IEEE Trans. Auto. Contr. AC-12 (1967) 585–587.CrossRefGoogle Scholar
  13. [13]
    R.N. Mishra and D.A. Wilson, A new algorithm for optimal reduction of multivariable systems, Int. J. Control 31 (1980) 443–466.Google Scholar
  14. [14]
    B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Auto. Contr. AC-26 (1981) 17–32.CrossRefGoogle Scholar
  15. [15]
    S. Mukherjee and R. N. Mishra, Reduced order modelling of linear multivariable systems using an error minimization technique. J. Franklin Inst. 325 (1988) 235–245.CrossRefGoogle Scholar
  16. [16]
    M. Olivi and S. Steer, Approximation rationelle en norme L2 des systèmes dynamiques, APII 24 (1990) 481–510.Google Scholar
  17. [17]
    E. Rosencher, Approximation rationelle des filtres à un ou deux indices: une approche Hilbertienne, Thèse de docteur-ingénieur, Univ. Paris IX-Dauphine (1978).Google Scholar
  18. [18]
    G. Ruckebush, Sur l'approximation rationelle des filtres, Rapport n. 35, CMA Ecole Polytechnique, Paris (1978).Google Scholar
  19. [19]
    Y. Shamash, Linear system reduction using Padé approximation to allow retention of dominant modes, Int. J. Control 21 (1975) 257–272.Google Scholar
  20. [20]
    J.T. Spanos, M.H. Milman and D.L. Mingori, A new algorithm for L2 optimal model reduction, Automatica 28 (1992) 897–909.CrossRefMathSciNetGoogle Scholar
  21. [21]
    J.L. Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain (AMS, Providence, RI, 1935).Google Scholar
  22. [22]
    D.A. Wilson, Optimum solution of model-reduction problem, Proc. IEE 117 (1970) 1161–1165.Google Scholar
  23. [23]
    D.A. Wilson, Model reduction for multivariable systems, Int. J. Control 20 (1974) 57–64.Google Scholar
  24. [24]
    D. Žigić, L. T. Watson, E.G. Collins, Jr., and D. S. Bernstein, Homotopy methods for solving the optimal projection equations for the H2 reduced order model problem, Int. J. Control 56 (1992) 173–191.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • W. Krajewski
    • 1
  • A. Lepschy
    • 2
  • M. Redivo-Zaglia
    • 2
  • U. Viaro
    • 2
  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Department of Electronics and InformaticsUniversity of PadovaPadovaItaly

Personalised recommendations