Numerical Algorithms

, Volume 9, Issue 2, pp 199–222 | Cite as

The work of Philip Rabinowitz on numerical integration

  • Walter Gautschi
Article

Abstract

A summary is given of Philip Rabinowitz's contributions to numerical analysis with emphasis on his work on integration.

Keywords

Work of P. Rabinowitz numerical integration bibliography 

AMS subject classification

01A65 01A70 65-03 65D30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Akrivis and K.-J. Förster, On the definiteness of quadrature formulae of Clenshaw-Curtis type, Computing 33 (1984) 363–366.Google Scholar
  2. [2]
    L.A. Anderson and W. Gautschi, Optimal weighted Chebyshev-type quadrature formulas, Calcolo 12 (1975) 211–248.Google Scholar
  3. [3]
    R.E. Barnhill and J.A. Wixom, Quadratures with remainders of minimum norm. I, II, Math. Comp. 21 (1967) 66–75 and 382–387.Google Scholar
  4. [4]
    K.S. Cole, H.A. Antosiewicz and P. Rabinowitz, Automatic computation of nerve excitation, J. Soc. Ind. Appl. Math. 3 (1955) 153–172. [Correction, ibid. K.S. Cole, H.A. Antosiewicz and P. Rabinowitz, Automatic computation of nerve excitation, J. Soc. Ind. Appl. Math. 6 (1958) 196–197.]CrossRefGoogle Scholar
  5. [5]
    R. Cools and P. Rabinowitz, Monomial cubature rules since “Stroud”: a compilation, J. Comp. Appl. Math. 48 (1993) 309–326.CrossRefGoogle Scholar
  6. [6]
    G. Criscuolo and G. Mastroianni, On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals, Math. Comp. 48 (1987) 725–735.Google Scholar
  7. [7]
    A.R. Curtis and P. Rabinowitz, On the Gaussian integration of Chebyshev polynomials, Math. Comp. 26 (1972) 207–211.Google Scholar
  8. [8]
    P. Davis, Errors of numerical approximation for analytic functions, J. Rat. Mech. Anal. 2 (1953) 303–313.Google Scholar
  9. [9]
    P. Davis and P. Rabinowitz, A multiple purpose orthonormalizing code and its uses, J. ACM 1 (1954) 183–191.CrossRefGoogle Scholar
  10. [10]
    P. Davis and P. Rabinowitz, On the estimation of quadrature errors for analytic functions, Math. Tables Aids Comp. 8 (1954) 193–203.Google Scholar
  11. [11]
    P.J. Davis and P. Rabinowitz, Abscissas and weights for Gaussian quadratures of high order, J. Res. Nat. Bur. Standards 56 (1956) 35–37.Google Scholar
  12. [12]
    P.J. Davis and P. Rabinowitz, Some Monte Carlo experiments in computing multiple integrals, Math. Tables Aids Comp. 10 (1956) 1–8.Google Scholar
  13. [13]
    P. Davis and P. Rabinowitz, Numerical experiments in potential theory using orthonormal functions, J. Washington Acad. Sci. 46 (1956) 12–17.Google Scholar
  14. [14]
    P. Davis and P. Rabinowitz, Additional abscissas and weights for Gaussian quadratures of high order. Values forn=64, 80, and 96. J. Res. Nat. Bur. Standards 60 (1959) 613–614.Google Scholar
  15. [15]
    P. Davis and P. Rabinowitz, Advances in orthonormalizing computation, in:Advances in Computers, Vol. 2 (Academic Press, New York, 1961) pp. 55–133.Google Scholar
  16. [16]
    P.J. Davis and P. Rabinowitz, Some geometrical theorems for abscissas and weights of Gauss type, J. Math. Anal. Appl. 2 (1961) 428–437.CrossRefGoogle Scholar
  17. [17]
    P.J. Davis and P. Rabinowitz, Ignoring the singularity in approximate integration, SIAM J. Numer. Anal. B 2 (1965) 367–383.CrossRefGoogle Scholar
  18. [18]
    P.J. Davis and P. Rabinowitz,Numerical Integration (Blaisdell, Waltham, MA, 1967).Google Scholar
  19. [19]
    P.J. Davis and P. Rabinowitz, On the nonexistence of simplex integration rules for infinite integrals, Math. Comp. 26 (1972) 687–688.Google Scholar
  20. [20]
    P.J. Davis and P. Rabinowitz,Methods of Numerical Integration (Academic Press, New York, 1975).Google Scholar
  21. [21]
    P.J. Davis and P. Rabinowitz,Methods of Numerical Integration, 2nd ed. (Academic Press, Orlando, FL, 1984).Google Scholar
  22. [22]
    D. Elliott and D.F. Paget, Product-integration rules and their convergence, BIT 16 (1976) 32–40.CrossRefGoogle Scholar
  23. [23]
    D. Elliott and D.P. Paget, The convergence of product integration rules, BIT 18 (1978) 137–141.CrossRefGoogle Scholar
  24. [24]
    K.-J. Förster and K. Petras, On estimates for the weights in Gaussian quadrature in the ultraspherical case, Math. Comp. 55 (1990) 243–264.Google Scholar
  25. [25]
    J.H. Freilich and P. Rabinowitz, Asymptotic approximation by polynomials in theL 1 norm, J. Approx. Theory 8 (1973) 304–314.CrossRefGoogle Scholar
  26. [26]
    W. Gautschi, Numerical quadrature in the presence of a singularity, SIAM J. Numer. Anal. 4 (1967) 357–362.CrossRefGoogle Scholar
  27. [27]
    W. Gautschi, Construction of Gauss-Christoffel quadrature formulas, Math. Comp. 22 (1968) 251–270.Google Scholar
  28. [28]
    W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comp. 3 (1982) 289–317.CrossRefGoogle Scholar
  29. [29]
    W. Gautschi, Questions of numerical condition related to polynomials, in:Studies in Numerical Analysis, ed. G.H. Golub, Studies in Mathematics vol. 24 (The Mathematical Association of America, 1984) pp. 140–177.Google Scholar
  30. [30]
    W. Gautschi, Remainder estimates for analytic functions, in:Numerical Integration: Recent Developments, Software and Applications, eds. O. Espelid and A. Genz, NATO ASI Series, Series C: Mathematical and Physical Sciences, Vol. 357 (Kluwer, Dordrecht, 1992) pp. 133–145.Google Scholar
  31. [31]
    W. Gautschi and G. Monegato, On optimal Chebyshev-type quadratures, Numer. Math. 28 (1977) 59–67.CrossRefGoogle Scholar
  32. [32]
    W. Gautschi and H. Yanagiwara, On Chebyshev-type quadratures, Math. Comp. 28 (1974) 125–134.Google Scholar
  33. [33]
    W. Gautschi and S.E. Notaris, An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions, Math. Comp. 51 (1988) 231–248.Google Scholar
  34. [34]
    P.C. Hammer and A.H. Stroud, Numerical evaluation of multiple integrals. II, Math. Tables Aids Comp. 12 (1958) 272–280.Google Scholar
  35. [35]
    A.S. Kronrod,Nodes and Weights for Quadrature Formulae. Sixteen-place Tables (Russian) (Izdat. “Nauka”, Moscow, 1964). [English transl.: Consultants Bureau, New York, 1965.]Google Scholar
  36. [36]
    A.N. Lowan, N. Davids and A. Levenson, Table of the zeros of the Legendre polynomials of order 1–16 and the weight coefficients for Gauss' mechanical quadrature formula, Bull. Amer. Math. Soc. 48 (1942) 739–743.Google Scholar
  37. [37]
    D.S. Lubinsky and P. Rabinowitz, Rates of convergence of Gaussian quadrature for singular integrands, Math. Comp. 43 (1984) 219–242.Google Scholar
  38. [38]
    D.S. Lubinsky and P. Rabinowitz, Hermite and Hermite-Fejér interpolation and associated product integration rules on the real line: TheL 1 theory, Canad. J. Math. 44 (1992) 561–590.Google Scholar
  39. [39]
    F. Mantel and P. Rabinowitz, The application of integer programming to the computation of fully symmetric integration formulas in two and three dimensions, SIAM J. Numer. Anal. 14 (1977) 391–425.CrossRefGoogle Scholar
  40. [40]
    P.G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18, no. 213 (1979).Google Scholar
  41. [41]
    P. Nevai, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc. 282 (1984) 669–698.Google Scholar
  42. [42]
    D. Nicholson, P. Rabinowitz, N. Richter and D. Zeilberger, On the error in the numerical integration of Chebyshev polynomials, Math. Comp. 25 (1971) 79–86.Google Scholar
  43. [43]
    J. Nowinski and P. Rabinowitz, The method of the kernel function in the theory of elastic plates, J. Appl. Math. Phys. 13 (1962) 26–42.CrossRefGoogle Scholar
  44. [44]
    T.N.L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 22 (1968) 847–856. [Errata, ibid. T.N.L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 23, 892.]Google Scholar
  45. [45]
    T.N.L. Patterson, On some Gauss and Lobatto based integration formulae, Math. Comp. 22 (1968) 877–881.Google Scholar
  46. [46]
    K. Petras, Gaussian quadrature formulae — second Peano kernels, nodes, weights and Bessel functions, Calcolo 30 (1993) 1–27.Google Scholar
  47. [47]
    K. Petras, Gaussian integration of Chebyshev polynomials and analytic functions,Proc. on Special Functions (dedicated to Luigi Gatteschi on his seventieth birthday), Ann. Numer. Math. 3 (1995), to appear.Google Scholar
  48. [48]
    R. Piessens, Modified Clenshaw-Curtis integration and applications to numerical computation of integral transforms, in:Numerical Integration: Recent Developments, Software and Applications, eds. P. Keast and G. Fairweather, NATO ASI Series, Series C: Mathematical and Physical Sciences, Vol. 203 (Reidel, Dordrecht, 1987) pp. 35–51.Google Scholar
  49. [49]
    P. Rabinowitz, Abscissas and weights for Lobatto quadrature of high order, Math. Comp. 14 (1960) 47–52.Google Scholar
  50. [50]
    P. Rabinowitz, Numerical experiments in conformal mapping by the method of orthonormal polynomials, J. ACM 13 (1966) 296–303.CrossRefGoogle Scholar
  51. [51]
    P. Rabinowitz, Calculations of the conductivity of a medium containing cylindrical inclusions by the method of orthogonalized particular solutions, J. Appl. Phys. 37 (1966) 557–560.CrossRefGoogle Scholar
  52. [52]
    P. Rabinowitz, Gaussian integration in the presence of a singularity, SIAM J. Numer. Anal. 4 (1967) 191–201.CrossRefGoogle Scholar
  53. [53]
    P. Rabinowitz, Applications of linear programming to numerical analysis, SIAM Rev. 10 (1968) 121–159.CrossRefGoogle Scholar
  54. [54]
    P. Rabinowitz, Practical error coefficients for estimating quadrature errors for analytic functions, Commun. ACM 11 (1968) 45–46.CrossRefGoogle Scholar
  55. [55]
    P. Rabinowitz, Rough and ready error estimates in Gaussian integration of analytic functions, Commun. ACM 12 (1969) 268–270.CrossRefGoogle Scholar
  56. [56]
    P. Rabinowitz, Mathematical programming and approximation, in:Approximation Theory, ed. A. Talbot (Academic Press, London, 1970) pp. 217–231.Google Scholar
  57. [57]
    P. Rabinowitz (ed.),Numerical Methods for Nonlinear Algebraic Equations (Gordon and Breach, London, 1970).Google Scholar
  58. [58]
    P. Rabinowitz, A short bibliography on solution of systems of nonlinear algebraic equations, in [57Numerical Methods for Nonlinear Algebraic Equations, pp. 195–199].Google Scholar
  59. [59]
    P. Rabinowitz, Ignoring the singularity in numerical integration, in:Topics in Numerical Analysis, ed. J.J.H. Miller (Academic Press, London, 1977) pp. 361–368.Google Scholar
  60. [60]
    P. Rabinowitz, The numerical evaluation of Cauchy principal value integrals,Proc. 4th Symp. on Numerical Mathematics, University of Natal, Durban, South Africa (1978) pp. 54–82.Google Scholar
  61. [61]
    P. Rabinowitz, The exact degree of precision of generalized Gauss-Kronrod integration rules, Math. Comp. 35 (1980) 1275–1283.Google Scholar
  62. [62]
    P. Rabinowitz, Generalized composite integration rules in the presence of a singularity, Calcolo 20 (1983) 231–238.Google Scholar
  63. [63]
    P. Rabinowitz, Gauss-Kronrod integration rules for Cauchy principal value integrals, Math. Comp. 41 (1983) 63–78 [Corrigenda, ibid P. Rabinowitz, Gauss-Kronrod integration rules for Cauchy principal value integrals, Math. Comp. 45 91985 277; 50 (1988) 655.]Google Scholar
  64. [64]
    P. Rabinowitz, Rates of convergence of Gauss, Lobatto, and Radau integration rules for singular integrals, Math. Comp. 47 (1986) 625–638.Google Scholar
  65. [65]
    P. Rabinowitz, The convergence of interpolatory product integration rules, BIT 26 (1986) 131–134.CrossRefGoogle Scholar
  66. [66]
    P. Rabinowitz, On the convergence of interpolatory product integration rules based on Gauss, Radau and Lobatto points, Israel J. Math. 56 (1986) 66–74.Google Scholar
  67. [67]
    P. Rabinowitz, On the definiteness of Gauss-Kronrod integration rules, Math. Comp. 46 (1986) 225–227.Google Scholar
  68. [68]
    P. Rabinowitz, A stable Gauss-Kronrod algorithm for Cauchy principal-value integrals, Comp. Math. Appl. Part B 12 (1986) 1249–1254.CrossRefGoogle Scholar
  69. [69]
    P. Rabinowitz, Numerical integration in the presence of an interior singularity, J. Comp. Appl. Math. 17 (1987) 31–41.CrossRefGoogle Scholar
  70. [70]
    P. Rabinowitz, The convergence of noninterpolatory product integration rules, in:Numerical Integration: Recent Developments, Software and Applications, eds. P. Keast and G. Fairweather, NATO ASI Series, Series C: Mathematical and Physical Sciences, Vol. 203 (Reidel, Dordrecht, 1987) pp. 1–16.Google Scholar
  71. [71]
    P. Rabinowitz, Convergence results for piecewise linear quadratures for Cauchy principal value integrals, Math. Comp. 51 (1988) 741–747.Google Scholar
  72. [72]
    P. Rabinowitz, Product integration based on Hermite-Fejér interpolation, J. Comp. Appl. Math. 28 (1989) 85–101.CrossRefGoogle Scholar
  73. [73]
    P. Rabinowitz, On an interpolatory product rule for evaluating Cauchy principal value integrals, BIT 29 (1989) 347–355.CrossRefGoogle Scholar
  74. [74]
    P. Rabinowitz, Numerical integration based on approximating splines, J. Comp. Appl. Math. 33 (1990) 73–83.CrossRefGoogle Scholar
  75. [75]
    P. Rabinowitz, Numerical evaluation of Cauchy principal value integrals with singular integrands, Math. Comp. 55 (1990) 265–276.Google Scholar
  76. [76]
    P. Rabinowitz, Generalized noninterpolatory rules for Cauchy principal value integrals, Math. Comp. 54 (1990) 217–279.Google Scholar
  77. [77]
    P. Rabinowitz, Uniform convergence of Cauchy principal value integrals of interpolating splines, Israel Math. Conf. Proc. 4 (1991) 225–231.Google Scholar
  78. [78]
    P. Rabinowitz, Extrapolation methods in numerical integration, Numer. Algor. 3 (1992) 17–28.CrossRefGoogle Scholar
  79. [79]
    P. Rabinowitz, S. Elhay and J. Kautsky, Empirical mathematics: the first Patterson extension of Gauss-Kronrod rules, Int. J. Comp. Math. 36 (1990) 119–129.Google Scholar
  80. [80]
    P. Rabinowitz and L. Gori,L 1-norm convergence of Hermite-Fejér interpolation based on the Laguerre and Hermite abscissas, Rend. Mat. Appl. (7) 14 (1994) 159–176.Google Scholar
  81. [81]
    P. Rabinowitz, J. Kautsky, S. Elhay and J.C. Butcher, On sequences of imbedded integration rules, in:Numerical Integration: Recent Developments, Software and Applications, eds. P. Keast and G. Fairweather, NATO ASI Series, Series C: Mathematical and Physical Sciences, Vol. 203 (Reidel, Dordrecht, 1987) pp. 113–139.Google Scholar
  82. [82]
    P. Rabinowitz and D.S. Lubinsky, Noninterpolatory integration rules for Cauchy principal value integrals, Math. Comp. 53 (1989) 279–295.Google Scholar
  83. [83]
    P. Rabinowitz and N. Richter, Perfectly symmetric two-dimensional integration formulas with minimal number of points, Math. Comp. 23 (1969) 765–779.Google Scholar
  84. [84]
    P. Rabinowitz and N. Richter, New error coefficients for estimating quadrature errors for analytic functions, Math. Comp. 24 (1970) 561–570.Google Scholar
  85. [85]
    P. Rabinowitz and N. Richter, Asymptotic properties of minimal integration rules, Math. Comp. 24 (1970) 593–609.Google Scholar
  86. [86]
    P. Rabinowitz and N. Richter, Chebyshev-type integration rules of minimum norm, Math. Comp. 24 (1970) 831–845.Google Scholar
  87. [87]
    P. Rabinowitz and I.H. Sloan, Product integration in the presence of a singularity, SIAM J. Numer. Anal. 21 (1984) 149–166.CrossRefGoogle Scholar
  88. [88]
    P. Rabinowitz and W.E. Smith, Interpolatory product integration for Riemann-integrable functions, J. Austral. Math. Soc. Ser. B 29 (1987) 195–202.Google Scholar
  89. [89]
    P. Rabinowitz and W.E. Smith, Interpolatory product integration in the presence of singularities:L 2 theory, J. Comp. Appl. Math. 39 (1992) 79–87.CrossRefGoogle Scholar
  90. [90]
    P. Rabinowitz and W.E. Smith, Interpolatory product integration in the presence of singularities:L p theory, in:Numerical Integration: Recent Developments, Software and Applications, eds. T.O. Espelid and A. Genz, NATO ASI Series, Series C: Mathematical and Physical Sciences, Vol. 357 (Kluwer, Dordrecht, 1992) pp. 93–109.Google Scholar
  91. [91]
    P. Rabinowitz and G. Weiss, Tables of abscissas and weights for numerical evaluation of integrals of the form\(\int_0^\infty {e^{ - x} x^n f(x)dx} \), Math. Tables Aids Comp. 13 (1959) 285–294.Google Scholar
  92. [92]
    A. Ralston and P. Rabinowitz,A First Course in Numerical Analysis (McGraw-Hill, New York, 1978).Google Scholar
  93. [93]
    T. Schira, Ableitungsfreie Fehlerabschätzungen bei numerischer Integration holomorpher Funktionen, Dissertation, University of Karlsruhe (1994).Google Scholar
  94. [94]
    I.H. Sloan and W.E. Smith, Properties of interpolatory product integration rules, SIAM J. Numer. Anal. 19 (1982) 427–442.CrossRefGoogle Scholar
  95. [95]
    W.E. Smith and I.H. Sloan, Product-integration rules based on the zeros of Jacobi polynomials, SIAM J. Numer. Anal. 17 (1980) 1–13.CrossRefGoogle Scholar
  96. [96]
    A.H. Stroud,Approximate Calculation of Multiple Integrals (Prentice-Hall, Englewood Cliffs, NJ, 1971).Google Scholar
  97. [97]
    G. Szegö, Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören, Math. Ann. 110 (1935) 501–513. [Collected Papers (ed. R. Askey), Vol. 2, 545–557.]CrossRefGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Walter Gautschi
    • 1
  1. 1.Department of Computer SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations