Plant and Soil

, Volume 37, Issue 2, pp 409–414 | Cite as

Nitrate-reducing capacity of roots and nodules ofAlnus rubra and roots ofPseudotsuga menziesii

  • C. Y. Li
  • K. C. Lu
  • J. M. Trappe
  • W. B. Bollen


Nitrate-reducing capability was demonstrated for root segments of red alder and, at more than twice that rate, for alder nodules. Root segments of Douglas-fir failed to reduce nitrate despite various treatments designed to induce such activity. The reported response of Douglas-fir to nitrate fertilizer may be ascribed either to microbial assimilation of nitrate ions with subsequent liberation of ammonium in the soil or to nitrate assimilation by fungi that form mycorrhizae with Douglas-fir roots.


Nodule Ammonium Nitrate Plant Physiology Assimilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Akiva, A., Sagiv, J. and Leshem, J., Nitrate reductase activity as an indicator for assessing the nitrogen requirement of grass crops. J. Sci. Food Agr.21, 405–407 (1970).Google Scholar
  2. 2.
    Bollen, W. B., Chen, C. S., Lu, K. C. and Tarrant, R. F., Effect of stem flow precipitation on chemical and microbiological soil properties beneath a single alder tree.In Biology of Alder, J. M. Trappe, J. F. Franklin, R. F. Tarrant and G. M. Hansen (eds.). Northwest Sci. Ass. Fortieth Ann. Meet. Symp. Proc.1967, 149–156 (1968).Google Scholar
  3. 3.
    Bollen, W. B. and Lu, K. C., Nitrogen transformations in soils beneath red alder and conifers.In Biology of Alder, J. M. Trappe, J. F. Franklin, R. F. Tarrant and G. M. Hansen (eds.). Northwest Sci. Ass. Fortieth Ann. Meet. Symp. Proc.1967, 141–148 (1968).Google Scholar
  4. 4.
    Breed, R. S., Murray, E. G. D. and Smith, N. R. (eds.), Bergey's manual of determinative bacteriology. 7th ed., Williams & Wilkins Co., Baltimore, 1094 p. (1957).Google Scholar
  5. 5.
    Cheniae, G. M. and Evans, H. J., On the relation between nitrogen fixation and nodule nitrate reductase of soybean root nodules. Biochim. Biophys. Acta26, 654–655 (1957).PubMedGoogle Scholar
  6. 6.
    Cheniae, G. M. and Evans, H. J., Physiological studies on nodule-nitrate reductase. Plant Physiol.35, 454–462 (1960).Google Scholar
  7. 7.
    Ebell, L. F. and McMullan, E. E., Nitrogenous substances associated with differential cone production responses of Douglas-fir to ammonium and nitrate fertilization. Canad. J. Botany48, 2169–2177 (1970).Google Scholar
  8. 8.
    Kessler, E., Nitrate assimilation by plants. Ann. Rev. Plant Physiol.15, 57–72 (1964).Google Scholar
  9. 9.
    Li, C. Y., Lu, K. C., Trappe, J. M. and Bollen, W. B., Enzyme systems of red alder and Douglas-fir in relation to infection byPoria weirii. In Biology of Alder, J. M. Trappe, J. F. Franklin, R. F. Tarrant and G. M. Hansen (eds.). Northwest Sci. Ass. Fortieth Ann. Meet. Symp. Proc.1967, 241–250 (1968).Google Scholar
  10. 10.
    Lips, S. H. and Roth-Bejerano, N., Light and hormones: interchangeability in the induction of nitrate reductase. Science166, 109–110 (1969).Google Scholar
  11. 11.
    Lips, S. H. and Roth-Bejerano, N., Hormonal regulation of nitrate reductase activity in leaves. New Phytol.69, 165–169 (1970).Google Scholar
  12. 12.
    Lundeberg, G., Utilization of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Stud. Forest. Suecica79, 1–95 (1970).Google Scholar
  13. 13.
    McIlvaine, T. C., A buffer solution for colorimetric comparison. J. Biol. Chem.49, 183–186 (1921).Google Scholar
  14. 14.
    Mulder, E. G., Boxma, R. and Veen, W. L. van, The effect of molybdenum and nitrogen deficiencies on ntirate reduction in plant tissue. Plant and Soil10, 335–355 (1959).Google Scholar
  15. 15.
    Radwan, M. A., Crouch, G. L. and Ward, H. S., Nursery fertilization of Douglasfir seedlings with different forms of nitrogen. USDA Forest Serv. Res. Pap. PNW-113, 8 p., Pac. Northwest Forest & Range Exp. Sta. (1971).Google Scholar
  16. 16.
    Randall, P. J., Change in nitrate and nitrate reductase levels on restoration of molybdenum to molybdenum-deficient plants. Australian J. Agr. Research20, 635–642 (1969).Google Scholar
  17. 17.
    Shaked, A. and Bar-Akiva, A., Nitrate reductase activity as an indication of molybdenum level and requirement of citrus plants. Phytochem.6, 347–350 (1967).Google Scholar
  18. 18.
    Townsend, L. R. and Blatt, C. R., Lowbush blueberry: evidence for the absence of a nitrate reducing system. Plant and Soil25, 456–460 (1966).Google Scholar
  19. 19.
    Trappe, J. M., Fungus associates of ectotrophic mycorrhizae. Botan. Rev.28, 538–606 (1962).Google Scholar
  20. 20.
    Trappe, J. M., Principles of classifying ectotrophic mycorrhizae for identification of fungal symbionts. Pap. XIV Int. Union Forest Research Organ.5, 46–59 (1967).Google Scholar
  21. 21.
    Trappe, J. M. and Strand, R. F., Mycorrhizal deficiency in a Douglas-fir region nursery. Forest Sci.15, 381–389 (1971).Google Scholar
  22. 22.
    Van den Driessche, R., Response of conifer seedlings to nitrate and ammonium sources of nitrogen. Plant and Soil34, 421–439 (1971).Google Scholar

Copyright information

© Martinus Nijhoff, The Hague 1972

Authors and Affiliations

  • C. Y. Li
  • K. C. Lu
  • J. M. Trappe
  • W. B. Bollen
    • 1
  1. 1.Forest Service, U.S. Department of Agriculture, Forestry Sciences LaboratoryPacific Northwest Forest and Range Experiment StationCorvallisUSA

Personalised recommendations