Numerical Algorithms

, Volume 2, Issue 3, pp 255–277 | Cite as

Multivariate polynomial interpolation under projectivities II: Neville-Aitken formulas

  • M. Gasca
  • G. Mühlbach


This is the second part of a note on interpolation by real polynomials of several real variables. For certain regular knot systems (geometric or regular meshes, tensor product grids), Neville-Aitken algorithms are derived explicitly. By application of a projectivity they can be extended in a simple way to arbitrary (k+1)-pencil lattices as recently introduced by Lee and Phillips. A numerical example is given.

Subject classifications

65D05 41A05 41A63 


Polynomial interpolation multivariate polynomials projectivities Neville-Aitken 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Berezin and N. Zhidkov,Computing Methods (2 vols.) (Addison-Wesley, 1965).Google Scholar
  2. [2]
    K.C. Chung and T.H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Num. Anal. 14 (1977) 735–743.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    M. Gasca and E. Lebrón, On Aitken-Neville formulae for multivariate interpolation, in:Numerical Approximation of Partial Differential Equations, E.L. Ortiz (ed.) (Elsevier Science, 1987) pp. 133–140.Google Scholar
  4. [4]
    M. Gasca and G. Mühlbach, Multivariate interpolation: A survey with regard to extrapolation, IMACS 1 (1989) 431–436.Google Scholar
  5. [5]
    S.L. Lee and G.M. Phillips, Interpolation on the simplex by homogeneous polynomials, in:ISNM 86 (Birkhäuser, Basel, 1988) pp. 295–305.Google Scholar
  6. [6]
    S.L. Lee and G.M. Phillips, Polynomial interpolation at points of a geometric mesh on a triangle, Proc. Roy. Soc. Edinburgh 108A (1988) 75–87.CrossRefMathSciNetGoogle Scholar
  7. [7]
    S.L. Lee and G.M. Phillips, Construction of lattices for Lagrange interpolation in projective spaces, to appear in Constructive Approximation.Google Scholar
  8. [8]
    G. Mühlbach and M. Gasca, Multivariate polynomial interpolation under projectivities I: Lagrange and Newton interpolation formulas, Num. Algorithms 1 (1991) 375–400.CrossRefMATHGoogle Scholar
  9. [9]
    H. Thacher and E. Milne, Interpolation in several variables, J. SIAM 8 (1960) 33–42.MATHMathSciNetGoogle Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1992

Authors and Affiliations

  • M. Gasca
    • 1
  • G. Mühlbach
    • 2
  1. 1.Dpto. Matemática AplicadaUniversidad de ZaragozaSpain
  2. 2.Institut für Angewandte MathematikUniversität HannoverGermany

Personalised recommendations