Advertisement

Journal of thermal analysis

, Volume 33, Issue 3, pp 977–982 | Cite as

Thermochemical properties of some f-electron element β-diketonates, and metal-oxygen bond energies. lanthanum(III)β-diketonates

  • E. Giera
  • W. Kqkołowicz
Inorganic Chemistry, Glass, Ceramics

Abstract

The standard molar enthalpies of formation of the crystalline lanthanum(III) chelate complexes with pentane-2,4-dione (acetylacetone, Hacac) and 1-phenylbutane-1,3-dione (benzoylacetone, Hbzac) were determined by the solution calorimetry method. The following values ofΔH f(s) 0 (kJ mol−1) were obtained: La(acac)3', −1916.2±7.0; La(bzac)3 · 2H2O, −2099.1 ±9.7. The enthalpies of the hypothetical complex dissociation reactions in the gaseous phase:
$$LaL_{3(g)} = La_{(g)} + 3L_{(g)} and LaL_{3(g)} = La_{(g)}^{ + 3} + 3L_{(g)}^ - $$
were calculated as a measure of the mean bond dissociation energy, <D>(La-O), and the mean coordinate bond dissociation energy, <DCB>(La-O), respectively.

Keywords

Lanthanum Dione Acac Acetylaceton Molar Enthalpy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Die molaren StandardbildungsenthalpienΔH f(s) 0 der kristallinen Chelate von Lanthan(III) mit Pentandion(2,4) (Acetylaceton, Hacac) und 1-Phenylbutandion(1,3)(Benzoylaceton, Hbzac) wurden lösungskalorimetrisch bestimmt zu: La(acac)3: ΔH f(s) 0 =(−1916.2±7.0) kJ mol−1 La(bzac)3·2H2O:ΔH f(s) 0 =−2099,1±9,7) kJ mol−1. Die Enthalpien der hypothetischen Dissoziationsreaktionen in de Gasphase LaL3(g)=La(g)+3L(g) und LaL3(g)=La (g) +3 +3 L (g) als Maß für die mittlere Dissoziationsenergie <D>(La-O) bzw. der mittleren Dissoziationsenergie der koordinativen Bindung <DCB>(La-O) wurden berechnet.

Резюме

Методом калориметри и в растворе определе ны стандартные молярны е энтальпии образования кристал лических хелатных ко мплексов трехвалентного лант ана с пентан-2,4дионом (ацетилацетон, Насас) и 1-фенилбутан-1,3-дионом (бензоилацетон, Hbzac). Полу чены следующие значенияΔ H f(s) 0 (кдж·моль−1) для La(acac)3: −1916,2±7,0; для La(bzac)3·2H2O: −2099,1±9,7. Вычислены энталь пии гипотетических р еакций диссоциации комплек сов в газовой фазе:
$$LaL_{3(g)} = La_{(g)} + 3L_{(g)} and LaL_{3(g)} = La_{(g)}^{ + 3} + 3L_{(g)}^ - $$
являющиеся мерой сре дней энергии диссоци ации связи 〈D〉(La-O) и мерой средней эн ергии диссоциации координ ационной связи 〈DCB〉(La-O).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kakołowicz and E. Giera, J. Chem. Thermodyn., 15 (1983) 203.CrossRefGoogle Scholar
  2. 2.
    A. Vogel, Practical Organic Chemistry, 3rd edn., Longmans, London 1956.Google Scholar
  3. 3.
    I. B. Liss and W. G. Bos, J. Inorg. Nucl. Chem., 39 (1977) 443.CrossRefGoogle Scholar
  4. 4.
    B. H. Justice and E. F. Westrum, J. Phys. Chem., 67 (1963) 339.Google Scholar
  5. 5.
    J. M. Hacking and G. Pilcher, J. Chem. Thermodyn., 11 (1979) 1015.CrossRefGoogle Scholar
  6. 6.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. B. Bailey and R. H. Schumm, U.S. Natl. Bur. Stand. Selected Values of Chemical Thermodynamic Properties, U.S. Government Printing Office, Washington DC 1968.Google Scholar
  7. 7.
    M. L. C. C. H. Ferrao, M. A. V. Ribeiro da Silva, S. Suradi, G. Pilcher and H. A. Skinner, J. Chem. Thermodyn., 13 (1981) 567.CrossRefGoogle Scholar
  8. 8.
    W. W. Wendlandt and T. D. George, J. Inorg. Nucl. Chem., 19 (1961) 245.CrossRefGoogle Scholar
  9. 9.
    R. L. Montgomery, U.S. Bureau of Mines, Invest. No. 5468 (1959).Google Scholar
  10. 10.
    T. Fujinaga, T. Kuwamoto, K. Sugiura and S. Ichiki, Talanta, 28 (1981) 295.CrossRefGoogle Scholar
  11. 11.
    J. E. Sicre, J. T. Dubois, K. J. Eisentraut and R. E. Sievers, J. Am. Chem. Soc., 91 (1969) 3476.CrossRefGoogle Scholar
  12. 12.
    CODATA, J. Chem. Thermodyn., 4 (1972) 331.Google Scholar
  13. 13.
    G. Briegleb, Angew. Chem., 76 (1964) 326.Google Scholar
  14. 14.
    L. R. Morss, Chem. Rev., 76 (1976) 827.CrossRefGoogle Scholar
  15. 15.
    S. G. Bratsch and J. J. Lagowski, J. Phys. Chem., 89 (1985) 3310.CrossRefGoogle Scholar
  16. 16.
    E. Giera and W. Kakołowicz, Thermochim. Acta, 90 (1985) 71.CrossRefGoogle Scholar
  17. 17.
    M. A. V. Ribeiro da Silva (Ed.), Thermochemistry and its Applications to Chemical and Biological Systems, NATO ASI series, Reidel, Dordrecht 1984, p. 317.Google Scholar

Copyright information

© Wiley Heyden Ltd., Chichester and Akadémiai Kiadó, Budapest 1988

Authors and Affiliations

  • E. Giera
    • 1
  • W. Kqkołowicz
    • 1
  1. 1.Institute of ChemistryUniversity of WrocławWrocławPoland

Personalised recommendations