Skip to main content
Log in

The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The 5S ribosomal RNA sequences have been determined for the rhodoplast of the red algaPorphyra umbilicalis and the chloroplast of the coniferJuniperus media. The 5S RNA sequence of theVicia faba chloroplast is corrected with respect to a previous report. A survey of the known sequences and secondary structures of 5S RNAs from plastids and cyanobacteria shows a close structural similarity between all 5S RNAs from land plant chloroplasts. The algal plastid 5S RNAs on the other hand show much more structural diversity and have certain structural features in common with bacterial 5S RNAs. A dendrogram constructed from the aligned sequences by a clustering algorithm points to a common ancestor for the present-living cyanobacteria and the land plant plastids. However, the algal plastids branch off at an early stage within the plastid-cyanobacteria cluster, before the divergence between cyanobacteria and land plant chloroplasts. This evolutionary picture points to the occurrence of multiple endosymbiotic events, with the ancestors of the present algal plastids already established as photosynthetic endosymbionts at a time when the ancestors of the present land plant chloroplasts were still free-living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bartsch M, Kimura M, Subramanian AR (1982) Purification, primary structure, and homology relationships of a chloroplast ribosomal protein. Proc Natl Acad Sci USA 79:6871–6875

    Google Scholar 

  • Cavalier-Smith T (1975) The origin of nuclei and of eukaryotic cells. Nature 256:463–468

    Google Scholar 

  • Dams E, Vandenberghe A, De Wachter R (1983) Sequences of the 5S rRNAs ofAzotobacter vinelandii, Pseudomonas aeruginosa andPseudomonas fluorescens with some notes on 5S RNA secondary structure. Nucleic Acids Res 11:1245–1252

    Google Scholar 

  • Dams E, Yamada T, De Baere R, Huysmans E, Vandenberghe A, De Wachter R (1987) Structure of 5S rRNA in Actinomycetes and relatives and evolution of Eubacteria. J Mol Evol 25:255–260

    Google Scholar 

  • Delihas N, Andersen J, Berns D (1985) Phylogeny of the 5S ribosomal RNA fromSynechococcus lividus II: the cyanobacterial/chloroplast 5S RNAs form a common structural class. J Mol Evol 21:334–337

    Google Scholar 

  • De Wachter R, Chen MW, Vandenberghe A (1982) Conservation of secondary structure in 5S ribosomal RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favourable. Biochimie 64: 311–329

    Google Scholar 

  • De Wachter R, Chen MW, Vandenberghe A (1984) Equilibria in 5S ribosomal RNA secondary structure. Eur J Biochem 143:175–182

    Google Scholar 

  • Doolittle WF (1982) Molecular evolution. In: Carr NG, Whitton BA (eds) The biology of Cyanobacteria. Blackwell, Oxford

    Google Scholar 

  • Dyer TA, Bowman CM (1979) Nucleotide sequences of chloroplast 5S ribosomal ribonucleic acid in flowering plants. Biochem J 183:595–604

    Google Scholar 

  • Eck R, Lazarus CM, Baldauf F, Metzlaff M, Hagemann R (1987) Sequence analysis andEscherichia coli minicell transcription test ofPelargonium plastid 5S rDNA. Mol Gen Genet 207: 514–516

    Google Scholar 

  • Erdmann VA, Wolters J (1986) Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences. Nucleic Acids Res 14: r1-r59

    Google Scholar 

  • Fang BL, De Baere R, Vandenberghe A, De Wachter R (1982) Sequences of three molluscan 5S ribosomal RNAs confirm the validity of a dynamic secondary structure model. Nucleic Acids Res 10:4679–4685

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    Google Scholar 

  • Hori H, Osawa S (1986) Evolutionary change in 5S rRNA secondary structure and a phylogenic tree of 352 5S rRNA species. BioSystems 19:163–172

    Google Scholar 

  • Huysmans E, De Wachter R (1986) The distribution of 5S ribosomal RNA sequences in phenetic hyperspace. Implications for eubacterial, eukaryotic, archaebacterial and early biotic evolution. Endocyt Cell Res 3:133–155

    Google Scholar 

  • Lim BL, Hori H, Osawa S (1983) The nucleotide sequences of 5S rRNAs from two red algae,Gracilaria compressa andPorphyra tenera. Nucleic Acids Res 11:5185–5188

    Google Scholar 

  • Lim BL, Kawai H, Hori H, Osawa S (1986) Molecular evolution of 5S ribosomal RNA from red and brown algae. Jpn J Genet 61:169–176

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. Life and its environment on the early earth. Freeman, San Francisco

    Google Scholar 

  • Maxwell ES, Liu J, Shively JM (1986) Nucleotide sequences ofCyanophora paradoxa cellular and cyanelle-associated 5S ribosomal RNAs: the cyanelle as a potential intermediate in plastid evolution. J Mol Evol 23:300–304

    Google Scholar 

  • Peattie DA (1979) Direct chemical method for sequencing RNA. Proc Natl Acad Sci USA 76:1760–1764

    Google Scholar 

  • Seewaldt E, Stackebrandt E (1982) Partial sequence of 16S ribosomal RNA and the phylogeny ofProchloron. Nature 295: 618–620

    Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274

    Google Scholar 

  • Takaiwa F, Kusuda M, Saga N, Suguira M (1982) The nucleotide sequence of 5S rRNA from a red alga,Porphyra yezoensis. Nucleic Acids Res 10:6037–6040

    Google Scholar 

  • Taylor FJR (1976) Autogenous theories for the origin of eukaryotes. Taxon 25:377–390

    Google Scholar 

  • Ursi D, Vandenberghe A, De Wachter R (1982) The sequence of the 5.8S ribosomal RNA of the crustaceanArtemia salina. With a proposal for a general secondary structure model for 5.8S ribosomal RNA. Nucleic Acids Res 10:3517–3530

    Google Scholar 

  • Van den Eynde H, De Wachter R (1987) Variable base pairing in a helix of eubacterial 5S ribosomal RNA points to the existence of a conformational switch. FEBS Lett 217:191–196

    Google Scholar 

  • Whatley JM, John P, Whatley FR (1979) From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc R Soc Lond B 204:165–187

    Google Scholar 

  • Willekens P, Huysmans E, Vandenberghe A, De Wachter R (1986a) Archaebacterial 5S ribosomal RNA: nucleotide sequence in two methanogen species, secondary structure models, and molecular evolution. Syst Appl Microbiol 7:151–159

    Google Scholar 

  • Willekens P, Stetter KO, Vandenberghe A, Huysmans E, De Wachter R (1986b) The structure of 5S ribosomal RNA in the methanogenic archaebacteriaMethanolobus tindarius andMethanococcus thermolithotrophicus. FEBS Lett 204:273–278

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Wolters J, Erdmann VA (1984) Comparative analyses of small ribosomal RNAs with respect to the evolution of plastids and mitochondria. Endocyt Cell Res 1:1–23

    Google Scholar 

  • Yamada T, Shimaji M (1986) Nucleotide sequence of the 5S rRNA gene from the unicellular green algaChlorella ellipsoidea. Nucleic Acids Res 14:9529

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Eynde, H., De Baere, R., De Roeck, E. et al. The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria. J Mol Evol 27, 126–132 (1988). https://doi.org/10.1007/BF02138372

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02138372

Key words

Navigation