Journal of Molecular Evolution

, Volume 27, Issue 2, pp 109–113 | Cite as

Informational parameters and randomness of mitochondrial DNA

  • M. I. Granero-Porati
  • A. Porati


The informational content of genomes of nuclear and mitochondrial origin is examined. By using the parameters of Shannon's information theory the language of mitochondrial DNA is shown to be more similar to the language of bacterial DNA than to that of nuclear DNA in more evolutionarily advanced animals. Moreover, using the parameters of Kolmogorov's theory on randomness, genes of different organisms (Neurospora crassa andSaccharomyces cerevisiae) coding for the same protein (subunit 9 of ATPase) are shown to have, if both of mitochondrial origin, a similar degree of randomness, whereas genes coding for the same protein, both belonging to the same organisms, exhibit a quite different degree of randomness when one is of mitochondrial origin and the other of nuclear origin. These results are in favor of the symbiotic origin of mitochondria.

Key words

Mitochondrial DNA Symbiotic theory Endogenous theory Information theory S-entropy Randomness K-entropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson S, Bankier AT, Barrel BG, de Bruijn MHL, Coulson AR, Drovin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–464Google Scholar
  2. Anderson S, de Brujin MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717Google Scholar
  3. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180Google Scholar
  4. Chaitin G (1966) On the length of programs for computing finite binary sequences. J Assoc Comput Mach 13:547–569Google Scholar
  5. Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi A Hatefi Y, Doolittle RF, Attardi G (1985) Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314:592–597Google Scholar
  6. Ebeling W, Jimenez-Montaño MA (1980) On grammar, complexity and information measures of biological macromolecules. Math Biosci 52:53–71Google Scholar
  7. Gatlin LL (1968) The information content of DNA. II. J Theor Biol 18:181–194Google Scholar
  8. Gatlin LL (1972) Information theory and the living system. Columbia University Press, New YorkGoogle Scholar
  9. Granero-Porati MI, Porati A, Zani L (1980) Informational parameters of an exact DNA base sequence. J. Theor Biol 86: 401–403Google Scholar
  10. Kolmogorov A (1968) Logical basis for information theory and probability theory. IEEE Trans Information Theory IT-14: 662–664Google Scholar
  11. Lipman DJ, Maizel J (1982) Comparative analysis of nucleic acid sequences by their general constraints. Nucleic Acids Res 10:2723–2739Google Scholar
  12. Rowe GW, Trainor LEH (1983) On the informational content of viral DNA. J Theor Biol 107:151–170Google Scholar
  13. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, Hutchinson III CA, Slocombe PM, Smith M (1977) Nucleotidic sequence of bacteriophage ΦX174 DNA. Nature 265: 687–695Google Scholar
  14. Subba Rao J, Geevan CP, Subba Rao G (1982) Significance of the information content of DNA in mutations and evolution. J Theor Biol 96:571–577Google Scholar
  15. van den Boogart P, Samallo J, Agsteribbe E (1982) Similar genes for mitochondrial ATPase subunit in the nuclear and mitochondrial genomes ofNeurospora crassa. Nature 298: 187–189Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • M. I. Granero-Porati
    • 1
  • A. Porati
    • 1
  1. 1.Department of Physics, GNBC-CNRUniversity of ParmaParmaItaly

Personalised recommendations