Advertisement

Meccanica

, Volume 11, Issue 2, pp 98–101 | Cite as

On Saint-Venant's principle in three-dimensional elasticity

  • Antonio Palamà
Article

Summary

Toupin's version of Saint-Venant's principle is extended to bodies of general shape, and an exponential upper bound for the strain energy is obtained. The rate of decay is shnow to depend on the first non-zero proper value of the Steklov problem formulated on suitable parts of the body.

Keywords

Mechanical Engineer Civil Engineer General Shape Suitable Part Steklov Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommario

Si estende a corpi di forma qualsiasi la formulazione di Toupin del principio di de Saint Venant, ottenendo una maggiorazione di tipo esponenziale per l'energia di deformazione. Si dimostra che la velocità di estinzione dipende dal primo autovalore del problema di Steklov formulato su parti opportune del corpo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Boussinesq,Application des potentiels à l'ètude de l'èquilibre et des muovements des solides elastiques, Gautier-Villars, Paris, 1885.Google Scholar
  2. [2]
    O. Zanaboni, Dimostrazione generale del principio del de Saint-Venant, Atti Accad. Lincei Rend.25, 117–121, 1937.Google Scholar
  3. [3]
    O. Zanaboni, Valutazione dell'errore massimo cui dà luogo l'applicazione del principio del de Saint-Venant, Atti Accad. Lincei Rend.25, 595–601, 1937.Google Scholar
  4. [4]
    O. Zanaboni, Sull'approssimazione dovuta al principio del de Saint-Venant nei solidi prismatici isotropi, Atti Accad. Lincei Rend.26, 340–345, 1937.Google Scholar
  5. [5]
    R. v. Mises,On Saint-Venant's principle, Bull. Amer. Math. Soc.51, 555–562, 1945.Google Scholar
  6. [6]
    E. Sternberg,On Saint-Venant's principle, Q. Appl. Math.11, 393–402, 1954.Google Scholar
  7. [7]
    J. H. Bramble andL. E. Payne,Some inequalities for vector functions with applications in elasticity, Arch. Rational Mech. Anal.11, 16–26, 1962.CrossRefGoogle Scholar
  8. [8]
    R. A. Toupin,Saint-Venant's principle, Arch. Rational Mech. Anal.18, 83–96, 1965.CrossRefGoogle Scholar
  9. [9]
    J. K. Knowles,On Saint-Venant's principle in the two dimensional linear theory of elasticity, Arch. Rational Mech. Anal.21, 1–22, 1966.CrossRefGoogle Scholar
  10. [10]
    M. E. Gurtin,The linear theory of elasticity. In Handbuch der Physik. Vol. VI a/2. Springer, 1972.Google Scholar
  11. [11]
    P. Villaggio,Qualitative Methods in Elasticity, Noordhoff (in press).Google Scholar

Copyright information

© Masson Italia Editori S.p.A 1976

Authors and Affiliations

  • Antonio Palamà
    • 1
  1. 1.Istituto di Scienza delle CostruzioniUniversità di PisaItaly

Personalised recommendations