Skip to main content
Log in

Factors affecting interaction of radiocobalt with river sediments

II. Composition and concentration of sediment, temperature

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The paper aims at the analysis of principal factors affecting the interaction of radiocobalt with freshwater solids, important for migration of radiocobalt in surface streams. Uptake of radiocobalt by sediment from a small river have been studied as a function of composition of the sediment, of liquid-to-solid ratio (V/m) and of temperature, using laboratory model experiments. The study of the effect of sediment composition was based on selective extraction of the sediment prior to the uptake and indicated that radiocobalt was sorbed on several components of the sediment simultaneously, probably on clay minerals, organic matter and oxidic coatings. Relative importance of these components depends on the pH and composition of the aqueous phase and on the concentration of radiocobalt. Distribution coefficient Kd characterizing the uptake of radiocobalt is nearly independent of the V/m ratio in V/m range typical for rivers, but decreased at V/m<1.7 dm3·g−1. Increase in temperature from 13°C to 23°C accelerate radiocobalt uptake but did not affect the “equilibrium” value of the uptake. Results obtained are compared with literature data and conclusions are drawn concerning the importance of the factors studied for modelling of radiocobalt migration in rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. PICAT et al., Study of the physicochemical forms of cobalt in the Loire water. In: Speciation of Fission and Activation Products in the Environment. EUR 10059, CEC, Brussels 1986, p. 269.

    Google Scholar 

  2. P. BENEŠ, Interaction of radionuclides with solid phase in the modelling of migration of radionuclides in surface waters. In: Impact des accidents d'origine nucleaire sur l'environnement. IVe Symposium International de Radioecologie de Cadarache, CEN Cadarache, 14–18 Mars 1988, Tome 1, C60.

  3. P. BENEŠ, M. JURÁK, M. KUNCOVÁ, J. Radioanal. Nucl. Chem., 132 (1989) 209.

    Google Scholar 

  4. E. HANSLÍK, A. MANSFELD, Investigation of the Sorption and Migration of Selected Natural and Artificial Radionuclides in Aquatic Environment. Report No. P 09-335-053-3/12b, Water Research Institute, Prague 1975 (in Czech).

    Google Scholar 

  5. G. FURNICA et al., The chemical behaviour and ecological transfer in the human food chain of some radionuclides in aqueous ecosystems. In: International Studies on the Radioecology of the Danube River, IAEA-TECDOC 219, IAEA, Vienna 1979, p. 45.

    Google Scholar 

  6. E. K. DUURSMA, D. EISMA, Meth. J. Sea Res., 6 (1973) 265.

    Google Scholar 

  7. S. R. ASTON, E. K. DUURSMA, Neth. J. Sea Res., 6 (1973) 225.

    Google Scholar 

  8. BARNEY, G. S., Variables affecting sorption and transport of radionuclides in Hanford subsoils. In: G. J. McCARTHY (Ed.), Scientific Basis for Nuclear Waste Management,Plenum Press, New York 1979, Vol. 1, p. 435.

    Google Scholar 

  9. J. K. MIETTINEN et al., Distribution coefficients between Finnish soils and groundwater. In: Environmental Migration of Long-lived Radionuclides. IAEA, Vienna 1982, p. 153.

    Google Scholar 

  10. J. L. MEANS et al., Geochim. Cosmochim. Acta, 42 (1978) 1763.

    Google Scholar 

  11. B. P. SPALDING, T. E. CERLING, Association of Radionuclides with Streambed Sediments in White Oak Creek Watershed. Report ORNL/TM-6895, Oak Ridge National Laboratory, Oak Ridge, Tennessee, September 1979.

    Google Scholar 

  12. T. E. CERLING, R. R. TURNER, Geochim. Cosmochim. Acta, 46 (1982) 1333.

    Google Scholar 

  13. U. FÖRSTNER, J. SCHOER, Some typical examples of the importance of the role of sediments in the propagation and accumulation of pollutants. In: Sediments and Pollution in Waterways. General Considerations. IAEA Vienna 1984, p. 137.

    Google Scholar 

  14. E. A. JENNE, Adv. Chem. Ser., 73 (1968) 337.

    Google Scholar 

  15. K. A. MAHMOUD et al., Transfer mechanism and concentrating processes of certain radionuclides in the aquatic ecology of the Ismailia Canal. In: Environmental Behaviour of Radionuclides Released in the Nuclear Industry, IAEA, Vienna, 1973, p. 205.

    Google Scholar 

  16. T. N. V. PILLAT et al., Curr. Sci., 40 (1971) 75.

    Google Scholar 

  17. J. FAURE, Role de la matiere organique d'un cours d'eau vis-à-vis de la pollution radioactive. Thése, Université de Sciences et Techniques du Languedoc, 1974.

  18. D. RAI, R. J. SERNE, Report PNL-2651, Richland, WA 1978.

  19. P. BENEŠ, M. JURÁK, Rádioaktivita a životné prostredie, 8 (1985) 205 (in Czech).

    Google Scholar 

  20. P. BENEŠ, P. STREJC, J. Radioanal. Nucl. Chem., Articles 99 (1986) 407.

    Google Scholar 

  21. A. Y. YOUSEF, The Transport of58Co in an Aqeous Environment. Ph. D. Thesis, University of Texas, 1964.

  22. T. H. SIBLEY, A. L. SANCHEZ, W. R. SCHELL, Distribution Coefficients for Radionuclides in Aquatic Environments. Adsorption Studies of Cobalt. NUREG/CR-1852, Vol. 6, Seattle, WA, 1981.

  23. E. K. DUURSMA, M. G. GROSS, Marine sediments and radiactivity. In: Radioactivity in the Marine Environment. Natl. Academy of Sci, Washington 1971, p. 147.

    Google Scholar 

  24. C. N. MURRAY, L. MURRAY, Adsorption-desoprtion equilibria of some radiónuclides in sediment-freshwater and sediment-seawater systems. In: Radioactive Contamination of the Marine Environment, IAEA, Vienna, 1973, p. 105.

    Google Scholar 

  25. S. M. HASANY, M. A. QURESHI, Intern. J. Appl. Radiation Isotope, 32 (1981) 747.

    Google Scholar 

  26. J. F. HODGSON, H. R. GEERING, M. FELLOWS, Soil. Sci. Soc. Am. Proc., 28 (1964) 39.

    Google Scholar 

  27. R. CHESTER, Nature, 206 (1965) 884.

    Google Scholar 

  28. M. TAMURA, E. MATIJEVIĆ, L. MEITE S, J. Coll. Interf. Sci., 92 (1983) 304.

    Google Scholar 

  29. P. H. TEWARI, W. LEE, J. Coll. Interf. Sci., 52 (1975) 77.

    Google Scholar 

  30. M. H. KURBATOV, G. B. WOOD, J. D. KURBATOV, J. Phys. Chem., 55 (1951) 1170.

    Google Scholar 

  31. I. G. McKINLEY, J. M. WEST, Radionuclide retardation during transport through factured granite. In: W. LUTZE (Ed.), Scientific Basis for Radioactive Waste Management, V., Amsterdam, Elsevier, 1982, p. 811.

    Google Scholar 

  32. A. TESSIER, P. G. C. CAMPBELL, M. BISSON, Anal. Chem., 51 (1979) 844.

    Google Scholar 

  33. P. BENEŠ et al., J. Radioanal. Nucl. Chem., 125 (1988) 295.

    Google Scholar 

  34. D. J. O'CONNOR, J. P. CONNOLLY, Water Res. 14 (1980) 1517.

    Google Scholar 

  35. H. MEIER et al., J. Radioanal. Nucl. Chem., 109 (1987) 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beneš, P., Jurák, M. & Černík, M. Factors affecting interaction of radiocobalt with river sediments. Journal of Radioanalytical and Nuclear Chemistry, Articles 132, 225–239 (1989). https://doi.org/10.1007/BF02136082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02136082

Keywords

Navigation