Radiotracer technique in adsorption studies

X. Efficient removal of Ba(II) from aqueous solutions by hydrous manganese oxide
  • S. P. Mishra
  • D. Tiwary


Hydrous manganese oxide (HMO) was synthesized and its adsorption properties with respect to Ba(II) ions investigated as a function of contact time, adsorptive concentration, temperature and pH, using a radiotracer technique. The adsorption equilibrium is achieved quickly in ca. 30 min and the steady state values of adsorption at various concentrations (10−2–10−7M) agree well with the classical Freundlich isotherm. The adsorption increases with increasing pH and reaches a maximum followed by a plateau over a fairly wide pH range. The temperature markedly affects the extent of adsorption and the process is thermodynamically found to be irreversible.


Oxide Physical Chemistry Steady State Manganese Inorganic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. P. MISHRA, N. SRINIVASU, Int. J. Appl. Radiation Isotopes, 43 (1992) 789.Google Scholar
  2. 2.
    S. M. HASANY, M. H. CHAUDHARY, J. Radioanal. Nucl. Chem., 89 (1985) 353.Google Scholar
  3. 3.
    S. ARDIZZONE, L. FORMARO, Surf. Technol., 19 (1983) 283.Google Scholar
  4. 4.
    S. AMBE, Radiochim. Acta, 46 (1989) 145.Google Scholar
  5. 5.
    R. R. GADDE, H. A. LAITINEN, Anal. Chem., 46 (1974) 2022.Google Scholar
  6. 6.
    P. FIGURA, B. McDUFFIE, Anal. Chem., 52 (1980) 1433.Google Scholar
  7. 7.
    H. W. LEVI, E. SCHIEWER, Radiochim. Acta, 9 (1968) 160.Google Scholar
  8. 8.
    H. W. LEVI, Treatment and Storage of High Level Radioactive Wastes, Vienna, 1963, p. 587.Google Scholar
  9. 9.
    E. D. GOLDBERG, J. Geol., 62 (1954) 249.Google Scholar
  10. 10.
    M. TOSHIKO, I. Kiyoshi Radioisotopes (Tokyo), 16 (1967) 68.Google Scholar
  11. 11.
    O. V. SINGH, S. N. TANDON, Int. J. Appl. Radioation Isotopes, 28 (1977) 701.Google Scholar
  12. 12.
    H. S. POSSELT, F. J. ANDERSON, W. J. WEBER, J. Envir. Sci., 2 (1968) 1087.Google Scholar
  13. 13.
    A. HALIKUNGERI, W. HAERDI, Int. J. Environ. Anal. Chem., 134 (1988) 215.Google Scholar
  14. 14.
    S. P. MISHRA, S. N. SINGH, D. TIWARY, Int. J. Appl. Radiation Isotopes, 42 (1991) 1177.Google Scholar
  15. 15.
    S. P. MISHRA, N. SRINIVASU, J. Radioanal. Nucl. Chem., 162 (1992) 299.Google Scholar
  16. 16.
    S. P. MISHRA, D. TIWARY, Ind. J. Technol., 1992 (in press).Google Scholar
  17. 17.
    S. P. MISHRA, N. SRINIVASU, D. TIWARY, Int. J. Appl. Radiation Isotopes, 1992 (in press).Google Scholar
  18. 18.
    S. P. MISHRA, N. SRINIVASU, Ind. J. Technol., 30 (1992) 409.Google Scholar
  19. 19.
    E. M. MIKHAIL, N. Z. MISAK, Int. J. Appl. Radiation Isotopes, 39 (1988) 1121.Google Scholar
  20. 20.
    M. ABE, Inorganic Ion Exchange Materials, A. CLEARFIELD (Ed.), Chapter 5, CRC Press, Boca Raton, Florida, 1982.Google Scholar
  21. 21.
    ASTM Cards of X-ray pattern.Google Scholar
  22. 22.
    S. P. MISHRA, S. N. SINGH, Int. J. Appl. Radiation Isotopes, 38 (1987) 541.Google Scholar
  23. 23.
    R. SIPS, J. Chem. Phys., 16 (1948) 490.Google Scholar
  24. 24.
    A. CLARK, The Theory of Adsorption and Catalysis, Academic Press, New York, 1970, p. 54.Google Scholar
  25. 25.
    P. H. TEWARI, W. J. LEE, J. Colloid Interf. Sci., 52 (1975) 77.Google Scholar
  26. 26.
    C. L. WU, M. H. YANG, C. C. LIN, Radiochim. Acta, 33 (1983) 57.Google Scholar
  27. 27.
    M. RASHID, M. EJAJ, Int. J. Appl. Radiation Isotopes, 37 (1986) 501.Google Scholar
  28. 28.
    J. W. MURRAY, J. Colloid Interface Sci., 46 (1974) 357.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • S. P. Mishra
    • 1
  • D. Tiwary
    • 1
  1. 1.Nuclear and Radiochemistry Laboratory, Department of ChemistryBanaras Hindu UniversityVaranasi(India)

Personalised recommendations