Studia Logica

, Volume 24, Issue 1, pp 161–172 | Cite as

On the interpretations of Aristotelian categorical propositions in the predicate calculus

  • Stanisław Jaśkowski


Mathematical Logic Computational Linguistic Predicate Calculus Categorical Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Łukasiewicz,Elements of Mathematical Logic, Oxford, Warszawa, 1963. Cf. Chap. V, pp. 103–117. (Reference is made here to a recent English-language edition, instead of the original Polish one, quoted by S. Jaśkowski-Ed.)Google Scholar
  2. 2.
    S. Leśniewski,O podstawach matematyki cz. X, XI (On the Foundations of Mathematics, Parts X and XI), inPrzegląd Filozoficzny, Warszawa, 1931. By the same author,Über die Grundlagen der Ontologie, C. R. de Soc. Sc. Let. Varsovie Cl. III vol. 23, Warszawa, 1930, pp. 111–132.Google Scholar
  3. 3.
    Concerning Brentano's theory seeT. Czeżowski,Przyczynek do sylogistyki Arystotelesa (A Contribution to Aristotles Syllogistic). Studia Soc. Sc. Torunensis, sec. A. vol. 2, pp. 65–76. Handbooks of logic often use the well-known names of syllogistic moods (e.g., Barbara) to theorems in the functional calculus.Google Scholar

Copyright information

© Warzawa 1969

Authors and Affiliations

  • Stanisław Jaśkowski

There are no affiliations available

Personalised recommendations