Meccanica

, Volume 8, Issue 1, pp 16–21 | Cite as

Second order phase equilibrium for classical bodies

  • Rinaldo Borghesani
Article
  • 15 Downloads

Summary

In this note the Author, recalling a previous work[15], gives a new formulation of second order phase equilibria for “classical bodies” such as those defined by Truesdell and Toupin in[8].

The Author arrives at three equivalent systems of partial differential equations (generalized Ehrenfest equations), the conditions for whose integration are shown to be always satisfied.

Finally, as particular cases, the equations ruling the phase equilibria for “classical fluids” and for “n component-classical fluid mixtures” are given.

Keywords

Differential Equation Mechanical Engineer Civil Engineer Partial Differential Equation Phase Equilibrium 

Sommario

In questa nota l'Autore, rifacendosi ad un lavoro precedente[15], presenta una nuova formulazione degli equilibri di fase del secondo ordine per “corpi classici” come quelli definiti da Truesdell e Toupin in[8].

L'Autore perviene a tre sistemi equivalenti di equazioni alle derivate parziali (equazioni di Ehrenfest generalizzate) dei quali viene dimostrata la integrabilità.

Infine, come casi particolari, si ottengono le equazioni che governano l'equilibrio di fase per “fluidi classici” e per “miscele fluide classiche” ad n componenti.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Courant andD. Hilbert,Methods of Mathematical Physics, Vol. II, Interscience, 1962.Google Scholar
  2. [2]
    I. M. Gelfand andG. E. Shilov,Generalized functions, Vol. I, Pergamon Press, 1964.Google Scholar
  3. [3]
    R. Smoluchowsky,Phase transformations in solids, J. Wiley, 1951Google Scholar
  4. [4]
    L. D. Landau andE. M. Lifschitz,Statistical Physics, Pergamon Press, 1959Google Scholar
  5. [5]
    L. D. Landau andE. M. Lifschitz,Electrodynamics of continuous media, Pergamon Press, 1960Google Scholar
  6. [6]
    A. B. Pippard,Classical Thermodynamics, Cambr. Un. Press, 1966Google Scholar
  7. [7]
    L. Tisza,Generalized Thermodynamics, M.I.T. Press, 1966Google Scholar
  8. [8]
    C. A. Truesdell andR. Toupin,The classical field theories, Handbuch der Physik. Vol. III/1, §§ 245–265, Springer Verlag, 1960Google Scholar
  9. [9]
    E. Varley andA. Day,Equilibrium phases of elastic materials at uniform temperature and pressure, Arch. Rat. Mech. Anal. no. 18, Vol. 22, p. 253–269, 1966Google Scholar
  10. [10]
    B. D. Coleman andW. Noll,On the thermostatics of continuous media, Arch. Rat. Mech. Anal., Vol. 4, p. 97–128, 1959/60Google Scholar
  11. [11]
    B. D. Coleman andE. M. Gurtin,Thermodynamics with internal state variables, Journ. Chem. Phys., Vol. 47, 2, p. 597–613, 1967Google Scholar
  12. [12]
    M. E. Gurtin andA. S. Vargas,On the classical theory of reacting fluid mixtures, Arch. Rat. Mech. Anal. no. 13, Vol. 43, p. 179–197, 1971Google Scholar
  13. [13]
    R. Borghesani,On the use of improper functions in the study of phase equilibrium, I, To appear in “La Rev. Roum. des Math. Pur. et Appl.”Google Scholar
  14. [14]
    R. Borghesani,On the use of improper functions in the study of phase equilibrium, II, To appear in “La Rev. Roum. des Math. Pur. et Appl.”Google Scholar
  15. [15]
    R. Borghesani,First order phase equilibrium for classical bodies, Meccanica, vol. VII, 4 (1972).Google Scholar

Copyright information

© Tamburini Editore s.p.a. Milano 1973

Authors and Affiliations

  • Rinaldo Borghesani
    • 1
  1. 1.Istituto MatematicoUniversità di GenovaItaly

Personalised recommendations