Advertisement

Meccanica

, Volume 7, Issue 4, pp 232–235 | Cite as

Decay of vortices in a visco-elastic liquid

  • Anadi Sankar Gupta
Article

Summary

Decay of vortices in the flow of a certain class of visco-elastic liquids (incompressible second-order fluids) is investigated. It is found that in the flow of double array of vortices, the vortices decay much faster in such a liquid than in ordinary viscous liquids. For the flow in the wake of such a liquid past a two-dimensional grid, a pair of bound eddies occur behind the single elements of the grid as in the viscous case but their scale diminishes with increase in the elastic parameter.

Keywords

Vortex Mechanical Engineer Civil Engineer Single Element Viscous Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommario

Si studia l'attenuazione dei vortici nel flusso di una certa classe di liquidi viscosi (fluidi incompressibili di secondo ordine).

Si trova che nel flusso di una schiera di vortici, i vortici si attenuano molto più rapidamente in tali liquidi che nei liquidi viscosi ordinari. Per il flusso nella scia di un reticolo bidimensionale si formano una coppia di vortici limitati dietro i singoli elementi del reticolo come nel caso viscoso, ma la loro scala diminuisce con l'aumentare del parametro elastico.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. I. Taylor,Phil. Mag., Vol. 46, pp. 671–674, 1923.Google Scholar
  2. [2]
    L. I. G. Kovasznay,Proc. Camb. Ph.il Soc., Vol. 44, pp. 58–62 1948.Google Scholar
  3. [3]
    H. Markovitz andB. D. Coleman,Advances in Applied Mechanics, Vol. 8, Academic Press, New York, 1964.Google Scholar
  4. [4]
    A. D. D. Craik,J. Fluid Mech., Vol. 33, pp. 33–38, 1968.Google Scholar
  5. [5]
    L. D. Landau andE. M. Lifshitz,Fluid Mechanics, Pergamon Press, 1959.Google Scholar
  6. [6]
    A. S. Gupta andL. Rai,J. Fluid Mech., Vol. 33, pp. 87–91, 1968.Google Scholar
  7. [7]
    G. E. Gadd,Nature, Vol. 217, pp. 1040–1042, 1968.Google Scholar

Copyright information

© Tamburini Editore s.p.a. Milano 1972

Authors and Affiliations

  • Anadi Sankar Gupta
    • 1
  1. 1.Department of MathematicsIndian Institute of TechnologyKharagpurIndia

Personalised recommendations