Advertisement

Meccanica

, Volume 7, Supplement 1, pp 35–44 | Cite as

Geometrical non-linear analysis of structures by finite elements

  • Duilio Benedetti
  • Carlos Brebbia
  • Luigi Cedolin
Article

Summary

The paper shows a comprehensive analysis of geometrically non linear structural problems by the finite element method.

The theoretical approach is based on a variational principle stating the incremental equilibrium through the stationarity of a functional that could be defined as the incremental total potential energy. The analysis is carried out in two distinct phases: first a prediction of the behaviour of the structure subjected to an increment of load then a correction by means of Newton Raphson method of the results obtained in the previous incremental step.

The approach makes it possible to determine the complete load deflection curve either in the prebuckling region or in the postbuckling one and to find out the critical load taking into account the deflection prior to buckling (non linearized buckling analysis).

Keywords

Finite Element Method Potential Energy Theoretical Approach Variational Principle Comprehensive Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommario

Nella nota si presenta una analisi generale di problemi geometricamente non lineari. Lo studio è effettuato ricorrendo al metodo degli elementi finiti e basandosi su una formulazione teorica che esprime l'equilibrio incrementale per mezzo della stazionarietà dell'energia potenziale totale incrementale.

Lo studio si articola nell'alternanza di due fasi distinte: dapprima si prevede la configurazione della struttura in seguito ad un certo incremento di carico esterno successivamente si corregge, mediante un procedimento iterativo, tale valutazione approssimata in modo da giungere ad una situazione equilibrata tra forze esterne e forze interne. Il metodo usato in questa fase è quello ben noto di Newton Raphson.

Diviene così possibile determinare la curva carichi-spostamenti anche in momenti successivi al buckling e si può determinare inoltre il carico critico tenendo conto della deformata precedente l'instabilità.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. J. Turner, E. H. Dill, H. C. Martin andR. J. Melosh,Large deflections of structures subjected to heating and external loads, Journal of Aerospace Sciences, Vol. 27, February 1960.Google Scholar
  2. [2]
    R. J. Gallagher andJ. Padlog,Discrete element approach to structural stability analysis, AIAA Journal, Vol. 1, no. 6, June 1963.Google Scholar
  3. [3]
    J. H. Argyris,Recent advances in matrix methods of structural analysis, Pcrgamon Press, 1964.Google Scholar
  4. [4]
    H. C. Martin,On the derivation of stiffness matrices for the analysis of large deflection and stability problems, Proceedings of Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, AFFDL-TR 66–80, 1966.Google Scholar
  5. [5]
    J. H. Argyris,Continua and discontinua, Proceedings of Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, October 1965.Google Scholar
  6. [6]
    J. S. Archer,Consistent matrix formulation for structural analysis using finite element techniques, AIAA Journal, Vol. 3, no. 10, October 1965.Google Scholar
  7. [7]
    B. J. Hartz,Matrix formulation of structural stability problems, Journal of the Structures Division, ASCE, Vol. 91, no. ST6, December 1965.Google Scholar
  8. [8]
    K. K. Kapur andB. J. Hartz,Stability of plates using the finite element method, Journal of the Engineering Mechanics Division, ASCE, Vol. 92, no. EM2, April 1966.Google Scholar
  9. [9]
    J. T. Oden,Calculation of geometric stiffness matrices for complex structures, AIAA Journal, Vol. 4, no. 8 August 1966.Google Scholar
  10. [10]
    C. A. Fellippa,Refined finite element analysis of linear and nonlinear two-dimensional structures, Report no. 66–22, Department of Civil Engineering, University of California, Berkeley, October 1966.Google Scholar
  11. [11]
    R. H. Gallagher,Stability of plates using the finite element method, Journal of the Engineering Mechanics Division, ASCE, Vol. 93, no EM1, February 1967.Google Scholar
  12. [12]
    L. A. Schmit Jr.,F. K. Bogner andR. L. Fox,Finite deflection structural analysis using plate and cylindrical shell discrete elements, Proceedings of AIAA/ASME 8th Structures, Structural Dynamics, and Materials Conference, Palm Springs, California 29–31 March, 1967.Google Scholar
  13. [13]
    D. R. Navaratna,Elastic stability of shells of revolution by the variational approach using discrete elements, ASRL TR139-1, Department of Aeronautics and Astronautics, M.I.T., June 1966.Google Scholar
  14. [14]
    D. R. Navaratna,Analysis of elastic stability of shells of revolution by the finite element method, Proceedings of the AIAA/ASME 8th Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, 29–31 March, 1967.Google Scholar
  15. [15]
    R. H. Gallagher, R. A. Gellatly, J. Padlog andR. H. Mallet,A discrete element procedure for thin shell instability analysis, AIAA Journal, Vol. 5, no. 1, January 1967.Google Scholar
  16. [16]
    P. V. Marcal,The effect of initial displacements on problems of large deflection and stability, Report ARPA E54, Nov. 1967, Brown University, Providence RI.Google Scholar
  17. [17]
    R. H. Mallet andP. V. Marcal,Finite element analysis of non linear structure, Journal of the Structural Division, ASCE, Vol. 94, St. 9, September 1968.Google Scholar
  18. [18]
    D. W. Murray andE. L. Wilson,Finite element large deflection analysis of plates, Journal of the Engineering Mechanics Division, ASCE, Vol. 95, no. EMI, February 1969.Google Scholar
  19. [19]
    V. V. Novozhilov,Foundations of the nonlinear theory of elasticity, (Graylock Press, Rochester, 1953), 153–176.Google Scholar
  20. [20]
    J. Famili andR.R. Archer,Finite asymmetric deformation of shallow spherical shells, AIAA Journal, Vol. 3, no. 3, March 1965.Google Scholar
  21. [21]
    J. A. Stricklin, W. E. Hasler, H. R. McDougall andF. J. Stebbins,Nonlinear analysis of shells of revolution by the matrix displacement method, AIAA Journal Vol. 6 no. 12, Dec. 1968.Google Scholar
  22. [22]
    R. E. Ball,A geometrically nonlinear analysis of arbitrarily loaded shells of revolution, NASA CR-909 January 1968.Google Scholar
  23. [23]
    J. A. Stricklin, D. R. Tidwell, W. E. Haisler andC. H. Samson Jr.,Consistent stiffness matrices in the analysis of shells, Proceedings of the AIAA/ASME 8th Structures, Structural Dynamics and Materials Conference, Palm Springs, California, 29–30 March, 1967.Google Scholar
  24. [24]
    Perrone, Nard R. Kao,Large deflection response and buckling of partially and fully loaded spherical caps., AIAA Journal, Vol. 8, no. 12, Dec. 1970.Google Scholar
  25. [25]
    T. Kanai andN. Yoshimura,Analysis of large deflection of plates by the finite element method, International Journal for Num. Methods in Engineering, Vol. 1, 1969.Google Scholar
  26. [26]
    R. R. Archer,On the numerical solution of the nonlinear equations for shells of revolution, Journal of Mathematics and Physics, Vol. 40, 1962.Google Scholar
  27. [27]
    W. E. Haisler, J. A. Stricklin andF. J. Stebbins,Development and evaluation of solution procedures for geometrically non-linear structural analysis by the direct stiffness method, Paper presented at the AIAA/ASME 12th Structures, Structural Dynamics and Materials Conference, Anaheim, California, April 19–21, 1971.Google Scholar
  28. [28]
    J. W. Wissman,Nonlinear structural analysis: tensor formation, Proceedings of Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, October 1965.Google Scholar
  29. [29]
    J. T. Oden andT. Sato,Finite strains and displacements of elastic membranes by the finite element method, International Journal of Solids and Structures, Vol. 3, May 1967.Google Scholar
  30. [30]
    J. T. Oden,Numerical formulation of nonlinear elasticity problems, Journal of the Structures Division, ASCE, Vol. 93, no. ST3, June 1967.Google Scholar
  31. [31]
    C. Brebbia andJ. J. Connor,Geometrical nonlinear F. E.analysis, Journal of the Engineering Mechanics Div. ASCE, Vol. 95, no. EM2, April. 1969.Google Scholar
  32. [32]
    J. J. Connor, R. D. Sagcher andS. Chan,Nonlinear analysis of elastic framed structures, Journal of the Structural Division, ASCE, Vol. 94, no. ST6, June 1968.Google Scholar
  33. [33]
    J. F. Mescall,Numerical solutions of nonlinear equations for shells of revolution, AIAA Journal, Vol. 4, no. 11, november 1966.Google Scholar
  34. [34]
    J. T. Oden,Finite element applications in nonlinear structural analysis, Proceedings of the Conference on Finite Element Methods, Vanderbilt University, Tennessec, Nov. 1969.Google Scholar
  35. [35]
    G. A. Greenbaum andD. C. Coussoy,Post buckling behaviour of a conical shell of revolution subjected to bending loads, AIAA Journal, Vol. 8, no. 4, April 1970.Google Scholar
  36. [36]
    D. Bushnell andB. O. Celmroth,Finite difference energy method for nonlinear shell analysis, Presented at the Conference on Computer Oriented Analysis of Shell Structures, Lockheed Co, Palo Alto, California, August 10–14, 1970.Google Scholar
  37. [37]
    G. A. Thurston,Continuation of Newton's method through bifurcation points, Journal of Applied Mechanics, Vol. 36, no. 3, Trans. ASME, Vol. 87, Series E, Sept. 1969.Google Scholar
  38. [38]
    F. K. Bogner, R. H. Mallet, M. D. Ninich andL. A. Schmit,Development and evaluation of energy search methods of nonlinear structural analysis, AFFDL-TR-65-113.Google Scholar
  39. [39]
    W. T. Koiter,Over the Stabiliteit van het elastisch Evenwicht, (On the stability of elastic equilibrium). Thesis, Delft, H. J. Paris, Amsterdam, 1945. English translation issued as NASA TT F-10 833, 1967.Google Scholar
  40. [40]
    W. T. Koiter,Elastic stability and postbuckling behavior, Proceedings of the Symposium on Nonlinear Problems, ed. R. E. Langer, University of Wisconsin Press, 1963.Google Scholar
  41. [41]
    J. M. T. Thompson andA. C. Walker,The nonlinear perturbation analysis of discrete structural systems, Int. J. of Solids and Structures, Vol. 4, 1968.Google Scholar
  42. [42]
    A. C. Walker,A nonlinear finite element analysis of shallow circular arches, International J. of Solid and Structures, Vol. 5, 1969.Google Scholar
  43. [43]
    J. Connor andM. Morin,Perturbation techniques in the analysis of geometrically nonlinear shells, Presented at a Colloquium of the International Union of Theoretical and Applied Mech. (IUTAM) on High Speed Computing on Elastic Structures, University of Liege, Belgium, August 23–28, 1970.Google Scholar
  44. [44]
    H. C. Martin,Finite element formulation of geometrically nonlinear problems, Proceedings Japan US Seminar on Matrix Meth. in Struct. Analysis and Design, Tokyo, 1969.Google Scholar
  45. [45]
    T. Kanai,Finite element analysis of the geometrically nonlinear problems, Proceedings Japan-US Seminar on Matrices Methods in Structural Analysis and Design, Tokyo, 1969.Google Scholar
  46. [46]
    M. A. Biot, Sur la stabilité de l'équilibre élastique. Equations de l'élasticité d'un milieu soumis à tension initiale, Annales de la Société Scientifique de Bruxelles, Vol. 54, Ser. B, Part I pp. 18–21, 1934.Google Scholar
  47. [47]
    M. A. Biot,Theory of elasticity with large displacements and rotations, in Proceedings of the Fifth International Congress for Applied Mechanics (Cambridge, Mass. Sept. 1938), pp. 117–122, John Wiley & Sons, Inc, New York, Chapman & Hall Ltd, London, 1939.Google Scholar
  48. [48]
    M. A. Biot, Théorie de l'élasticité du second ordre avec application à la théorie du flambage, Annales de la Societé Scientifique de Bruxelles, Vol. 59 Ser. I, pp. 104–112, 1939.Google Scholar
  49. [49]
    M. A. Biot,Nonlinear theory of elasticity and the linearized case for a body under initial stress, Philosophical Magazine, Vol. 27, Ser. 7, pp. 468–489, 1939.Google Scholar
  50. [50]
    M. A. Biot, Elastizitatstheorie exeiter Ordnung mit Anwendungen, Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 20, no. 2 pp. 89–99, 1940.Google Scholar
  51. [51]
    M. A. Biot,Increase of torsional stiffness of a prismatical bar due to axial tension, Journal of Applied Physics, Vol. 10, no. 12, pp. 860–864, 1939.Google Scholar
  52. [52]
    M. A. Biot,The influence of initial stress on elastic waves, Journal of Applied Physics, Vol. 11, no. 8, pp. 522–530, 1940.Google Scholar

Copyright information

© Tamburini Editore s.p.a. Milano 1972

Authors and Affiliations

  • Duilio Benedetti
    • 1
  • Carlos Brebbia
    • 2
  • Luigi Cedolin
    • 1
  1. 1.Istituto di Scienza e Tecnica delle CostruzioniPolitecnico di MilanoItaly
  2. 2.Civil Engineering DepartmentUniversity of SouthamptonUK

Personalised recommendations