Lasers in Medical Science

, Volume 10, Issue 3, pp 193–200 | Cite as

Interstitial laser thermotherapy: Comparison between bare fibre and sapphire probe

  • Páll H. Möller
  • Lars Lindberg
  • Pär H. Henriksson
  • Bertil R. R. Persson
  • Karl-G. Tranberg
Original Articles


A sapphire probe and a bare fibre were compared with respect to temperature control and distribution and light fluence in interstitial laser thermotherapy. Experiments were performed in processed liver using an Nd-YAG laser and output power levels of 1–4 W. The temperature was controlled at a distance of 10 mm using a feedback circuit with an automatic thermometry system and thermistor probes. With the sapphire probe, carbonization was rare at power levels of 1–2 W but was observed in half of the experiments at 3 W and in all experiments at 4 W. Using the bare fibre, carbonization was seen in almost all experiments. Absence of carbonization was associated with a moderate decrease in the penetration of light and excellent control of the temperature, whereas carbonization led to rapid impairment of light penetration and temperature control. In addition, the temperature gradient was smaller with the sapphire probe than with the bare fibre or when carbonization was absent. It is concluded that a diffuser tip, such as the sapphire probe, may be preferable to the bare fibre for interstitial laser thermotherapy because it gives a smaller temperature gradient and helps to avoid carbonization which results in preserved light penetration and improved temperature control.

Key words

Nd-YAG laser Hyperthermia Light penetration Temperature distribution Feedback control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mang TS. Combination studies of hyperthermia induced by the Neodymium:Yttrium-Aluminium-Garnet (Nd:YAG) laser as an adjuvant to photodynamic therapy.Lasers Surg Med 1990,10:173–8PubMedGoogle Scholar
  2. 2.
    Kimel S, Svaasand LO, Hammer-Wilson M et al. Demonstration of synergistic effects of hyperthermia and photodynamic therapy using the chick chorioallantic membrane model.Lasers Surg Med 1992,12:432–40PubMedGoogle Scholar
  3. 3.
    Wyman DR, Whelan WM, Wilson BC. Interstitial laser photocoagulation: Nd:YAG 1064 nm optical fiber source compared to point heat source.Lasers Surg Med 1992,12:659–64PubMedGoogle Scholar
  4. 4.
    Amin Z, Buonaccorsi G, Mills T et al. Interstitial laser photocoagulation: evaluation of a 1320 nm Nd-YAG and an 805 nm diode laser: the significance of charring and the value of pre-charring the fibre tip.Lasers Med Sci 1993,8:113–20Google Scholar
  5. 5.
    Wyman D, Wilson B, Adams K. Dependence of laser photocoagulation on interstitial delivery parameters.Lasers Surg Med 1994,14:59–64PubMedGoogle Scholar
  6. 6.
    Daikuzono N, Suzuki S, Tajiri H et al. Laserthermia: a new computer-controlled contact Nd:YAG system for interstitial local hyperthermia.Lasers Surg Med 1988,8:254–8PubMedGoogle Scholar
  7. 7.
    Castrén-Persons M, Lipasti J, Puolakkainen P, Schröder T. Laser-induced hyperthermia: comparison of two different methods.Lasers Surg Med 1992,12:665–8PubMedGoogle Scholar
  8. 8.
    Masters A, Bown SG. Interstitial laser hyperthermia in tumour therapy.Ann Chir Gynaecol 1990,79:244–51PubMedGoogle Scholar
  9. 9.
    Möller PH, Lindberg L, Henriksson PH et al. Temperature control and light penetration in a feedback interstitial laser thermotherapy system.Int J Hyperthermia (in press)Google Scholar
  10. 10.
    Nilsson P. Physics and technique of microwave-induced hyperthermia in the treatment of malignant tumours. PhD Thesis, Lund University, 1984Google Scholar
  11. 11.
    Svaasand LO, Gomer CJ, Morinelli W. On the physical rationale of laser induced hyperthermia.Lasers Med Sci 1990,5:121–7Google Scholar
  12. 12.
    Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions.Photochem Photobiol 1991,53:825–35PubMedGoogle Scholar
  13. 13.
    Panjehpour M, Overholt BF, Milligan AJ et al. Nd:YAG laser-induced interstitial hyperthermia using a long frosted contact probe.Lasers Surg Med 1990,10:16–24PubMedGoogle Scholar
  14. 14.
    Hiele M, Penninckx F, Gevers AM et al. Interstitial thermotherapy for liver tumours: studies of different fibres and radiation characteristics.Lasers Med Sci 1993,8:121–5Google Scholar
  15. 15.
    Van Hillegersberg R, Vanstaveren HJ, Kort WJ et al. Interstitial Nd:YAG laser coagulation with a cylindrical diffusing fiber tip in experimental liver metastases.Lasers Surg Med 1994,14:124–38PubMedGoogle Scholar
  16. 16.
    Elias Z, Powers SK, Atstupenas E, Brown JT. Hyperthermia from interstitial laser irradiation in normal rat brain.Lasers Surg Med 1987,7:370–5PubMedGoogle Scholar
  17. 17.
    Waldow SM, Russell GE, Wallner PE. Microprocessorcontrolled Nd:YAG laser for hyperthermia induction in the RIF-1 tumor.Lasers Surg Med 1992,12:417–24PubMedGoogle Scholar
  18. 18.
    Godlewski G, Sambuc P, Eledjam JJ et al. A new device for inducing deep localized vaporization in liver with the Nd-YAG laser.Lasers Med Sci 1988,3:111–7Google Scholar
  19. 19.
    Dowlatshahi K, Bangert JD, Haklin MF et al. Protection of fiber function by para-axial fluid flow in interstitial laser therapy of malignant tumors.Lasers Surg Med 1990,10:322–7PubMedGoogle Scholar
  20. 20.
    Van Hillegersberg R. Laser treatment for liver metastases: thermal and photodynamic therapy. PhD Thesis, Erasmus University, Rotterdam, 1993Google Scholar
  21. 21.
    Hahl J, Haapiainen R, Ovaska J et al. Laser-induced hyperthermia in the treatment of liver tumors.Lasers Surg Med 1990,10:319–21PubMedGoogle Scholar
  22. 22.
    Tsunekawa H, Sugihara M, Kuroiwa A et al. Experimental and clinical studies on laserthermia using an Nd:YAG laser.SPIE 1988,907:66–70Google Scholar
  23. 23.
    Castrén-Persons M, Schröder T, Rämö OJ et al. Contact Nd:YAG laser potentiates the tumor cell killing effect of hyperthermia.Lasers Surg Med 1991,11:595–600PubMedGoogle Scholar
  24. 24.
    Waldow SM, Henderson BW, Dougherty TJ. Hyperthermic potentiation of photodynamic therapy employing Photofrin I and II: comparison of results using three animal tumour models.Lasers Surg Med 1987,7:12–22PubMedGoogle Scholar
  25. 25.
    Levendag PC, Marijnissen JPA, De Ru VJ et al. Interaction of interstitial photodynamic therapy and interstitial hyperthermia in a rat rhabdomyosarcoma—a pilot study.Int J Radiat Oncol Biol Phys 1988,14:139–45PubMedGoogle Scholar
  26. 26.
    Marijnissen JPA, Star WM. Quantitative light dosimetry in vitro and in vivo.Lasers Med Sci 1987,2:235–4Google Scholar

Copyright information

© W.B. Saunders Company Ltd 1995

Authors and Affiliations

  • Páll H. Möller
    • 1
  • Lars Lindberg
    • 1
  • Pär H. Henriksson
    • 1
  • Bertil R. R. Persson
    • 1
  • Karl-G. Tranberg
    • 1
  1. 1.Departments of Surgery and Radiation PhysicsLund UniversityLundSweden

Personalised recommendations