Lasers in Medical Science

, Volume 11, Issue 2, pp 71–78 | Cite as

The physics of diode lasers

  • P. M. Ripley
Invited Review


In this paper, a brief history of the development of the diode laser is presented, with emphasis given to the features that have led to the widespread commercial exploitation of this device. The basic physics of the diode laser is explained in detail, outlining the advancements made in device technology from the basic homojunction diode laser to heterojunctions incorporating multi-quantum well structures. The typical output characteristics of both a solitary diode laser and an array are also included in order to illustrate the similarity of both devices. Finally, recent developments in device technology are addressed with a brief mention of new applications.

Key words

Diode laser Homojunction Heterojunction Multi-quantum well Array 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maiman TH. Stimulated optical radiation in ruby masers.Nature 1960,187:493Google Scholar
  2. 2.
    Javan A, Bennett WR, Harriot DR. Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture.Phys Rev Lett 1961,6:106Google Scholar
  3. 3.
    Patel CKN. Continuous wave laser action on vibrational-rotational transitions of CO2.Phys Rev A 1964,136:1187–93Google Scholar
  4. 4.
    Burnham R, Djeu N. Ultraviolet-preionised dischargepumped lasers in XeF, KrF and ArF.Appl Phys Lett 1964,4:128–30Google Scholar
  5. 5.
    Walter WT, Piltch M, Solimene N et al. Pulsed-laser action in atomic copper vapour.Bull Amer Phys Soc 1966,11:113Google Scholar
  6. 6.
    Bridges WB. Laser oscillation in singly ionised argon in the visible spectrum.Appl Phys Lett 1964,4:128–30Google Scholar
  7. 7.
    Geusic JE, Marcos HM, Van Uitert LG. Laser oscillations in Nd-doped yttrium aluminium, yttrium gallium and yttrium gadolinium garnets.Appl Phys Lett 1964,4:182–4Google Scholar
  8. 8.
    Schäfer FP, Schmidth FPW, Volze J. Organic dye solution laser.Appl Phys Lett 1966,9:306Google Scholar
  9. 9.
    Round HJ. A note on carborundum.Elect World 1907,19:309Google Scholar
  10. 10.
    Craford MG. Recent developments in LED technology.IEEE Trans Elect Dev 1977, ED-24:935Google Scholar
  11. 11.
    Quist TM, Rediker RH, Keyes RJ et al. Semiconductor maser of GaAs.Appl Phys Lett 1962,1:91Google Scholar
  12. 12.
    Nathan MI, Dumke WP, Burns G et al. Stimulated emission of radiation from a GaAs p-n Junction.Appl Phys Lett 1962,1:62Google Scholar
  13. 13.
    Hall RN, Fenner GE, Kingsley JD et al. Coherent light emission from GaAs junctions.Phys Rev Lett 1962,9:366Google Scholar
  14. 14.
    Svelto O.Principles of Lasers, 3rd edition. New York: Plenum Press, 1989:351Google Scholar
  15. 15.
    Kroemer H. A proposed class of heterojunction injection lasers.Proc IEEE 1963,51:1782Google Scholar
  16. 16.
    Hayashi I, Panish MB, Foy PW et al. Junction lasers which operate continuously at room temperature.Appl Phys Lett 1970,17:109Google Scholar
  17. 17.
    Holonyak N, Kolbas RM, Dupuis RM et al. Quantumwell heterostructure lasers.IEEE J Quant Elect 1980, QE-16:170Google Scholar
  18. 18.
    Miya T, Terunuma Y, Hosaka T et al. Ultimate low-loss singlemode fibre at 1.55μm.Elect Lett 1979,15:108Google Scholar
  19. 19.
    Holonyak N, Bevacqua SF. Coherent (visible) light emission from Ga(As1−xPx) junctions.Appl Phys Lett 1962,1:82Google Scholar
  20. 20.
    Lin PJ, Kleinman L. Energy bands of PbTe, PbSe and PbS.Phys Rev 1966,142:148Google Scholar
  21. 21.
    Melngailis I, Mooradian A.Laser Applications to Optics and Spectroscopy, 1st edition. New York: Addison-Wesley, 1975:178Google Scholar
  22. 22.
    Akiba S, Sakai K, Yamamoto T. Direct modulation of InGaAsP/InP double heterostructure lasers.Elect Lett 1978,14:197Google Scholar
  23. 23.
    Kogelnik H, Shank CV. Stimulated emission in a periodic structure.Appl Phys Lett 1971,18:152. Coupled-wave theory of distributed feedback lasers,J Appl Phys 1973,43:2327Google Scholar
  24. 24.
    Aiki K, Nakamura M, Umeda J. Lasing characteristics of distributed feedback GaAs-GaAlAs diode lasers with separate optical and carrier confinement.IEEE J Quant Elect 1976,QE-12:597Google Scholar
  25. 25.
    SDL Incorporated,Product Catalogue 1995:1–3Google Scholar
  26. 26.
    Haden JM, Nam DW, Welch DF et al. High-power, 60 W Quasi-cw, visible diode-laser arrays.Elect Lett 1992,28:451–2. Serreze HB, Harding CM. 100 Watt 671 nm visible laser diode-array.Elect Lett 1992,28:2115–6Google Scholar
  27. 27.
    Endriz JG, Vakili M, Browder GS et al. High-power diode-laser arrays.IEEE J Quant Elect 1992,28:952–65Google Scholar
  28. 28.
    Gunshor RI, Nurmikko AV. The 1st compact blue-green diode lasers—wideband gap II–VI semiconductors come of age.Proc. IEEE 1994,82:1503–13Google Scholar
  29. 29.
    Ishibashi A. II–IV Blue-green diode lasers.IEEE J Quant Elect 1995,1:741–8Google Scholar
  30. 30.
    Nichia claims room-temperature blue-purple diode laser.Photonics Spectra 1996,30:27Google Scholar
  31. 31.
    Tsutsumi K, Nakaki Y, Tokunaga GA et al. Highdensity recording with a visible laser-diode in direct overwrite Mo Disk.IEEE Trans Magnet 1993,29:3760–5Google Scholar
  32. 32.
    Martinelli RU. Mid-infrared wavelengths enhance trace-gas sensing.Laser Focus World 1996,32:77–81Google Scholar
  33. 33.
    Stepanov EV, Moskalenko KL. Gas-analysis of human exhalation by tunable diode laser spectroscopy.Opt Eng 1993,32:361–7Google Scholar
  34. 34.
    Malcolm GPA, Ferguson AI. Diode-pumped solid-state lasers.Contem Phys 1991,32:305–19Google Scholar
  35. 35.
    Craig BB, Nighan WL. Powerful solid-state lasers steal ion's thunder.Photonics Spectra 1996,30:101–8Google Scholar
  36. 36.
    Scheps R. Cr-LiCaAlF6 laser pumped by visible laser diodes.IEEE J Quant Elect 1991,27:1968–70Google Scholar

Copyright information

© W.B. Saunders Company Ltd 1996

Authors and Affiliations

  • P. M. Ripley
    • 1
  1. 1.Department of Medical Physics & BioengineeringUniversity College LondonLondonUK

Personalised recommendations