Skip to main content
Log in

Cultured and immediately procured endothelial cells: Current and future clinical applications

  • Published:
Annals of Vascular Surgery

Abstract

Great progress has been made in the last several years in our ability to culture human endothelial cells. In addition, techniques to immediately procure and utilize these cells have also been developed. The purpose of this paper is to present an overview of the current and potential uses of these cells in both vascular and nonvascular conditions. It is likely that endothelial cells will be used in a variety of applications in the near future. Immediately procured and cultured cells will be used to resurface vascular prosthetic grafts. They may also be used on the surface of vessels following procedures such as balloon angioplasty or atherectomy. In addition, they may be placed upon the surface of implantable devices such as expandable stents. Through the mechanism of genetic engineering, these cells may be modified to produce proteins, which may modify thrombogenicity and perhaps decrease the rate of recurrent stenosis by influencing cellular hyperplasia. Genetically modified endothelial cells also have great potential in nonvascular disease. Their contact with circulating blood makes them an ideal cell for production of proteins to correct systemic conditions such as the insulin deficiency found in diabetes mellitus. The application of endothelial cell biology in both vascular and nonvascular science represents one of the most exciting fields of research active today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MANNICK JA, WHITEMORE AD. Aortoiliac occlusive disease. In: MOORE WS (ed).Vascular Surgery Comprehensive Review, 3rd Edition. Philadelphia: W.B. Saunders 1991, pp 357.

    Google Scholar 

  2. QUINONES-BALDRICH WJ, BUSUTTIL RW, BAKER JD, et al. Is preferential use of polytetrafluoroethylene grafts for femoropopliteal bypass justified?J Vasc Surg 1988;8:219–228.

    Article  PubMed  Google Scholar 

  3. Veterans Administration Cooperative Study Group 141. Comparative evaluation of prosthetic, reversed and in-situ vein bypass grafts in distal popliteal and tibioperoneal revascularization.Arch Surg 1988;123:434–438.

    Google Scholar 

  4. LEWIS W. Endothelium in tissue culture.Am J Anat 1922;30:39–59.

    Google Scholar 

  5. JAFFEE E, HOYER L, NANCHMAN R. Synthesis of antihemophilic factor antigen by cultured human endothelial cells.J Clin Invest 1973;52:2757–2764.

    PubMed  Google Scholar 

  6. GIMBRONE M, COTRAN R, FOLKMAN J. Human vascular endothelial cells in culture.J Cell Biol 1974;60:673–684.

    Article  PubMed  Google Scholar 

  7. MACIAG T, HOOVER GA, STEMERMAN MB, et al. Serial propagation of human endothelial cells in vitro.J Cell Biol 1981;91:420–426.

    PubMed  Google Scholar 

  8. THORONTON S, MUELLER S, LEVINE E. Human endothelial cells: cloning and long term serial cultivation employing heparin.Science 1983;222:623–625.

    PubMed  Google Scholar 

  9. JARRELL B, SHAPIRO S, LEVINE E. Human adult endothelial growth in culture.J Vasc Surg 1984;1:757–764.

    Article  PubMed  Google Scholar 

  10. ROSEN EM, MUELLER SM, NOVERAL J, et al. Proliferative characteristics of clonal endothelial cell stains.J Cell Physiol 1981;107:123–137.

    Article  PubMed  Google Scholar 

  11. MUELLER S, ROSEN E, LEVIN E. Cellular senescence in a cloned strain of bovine fetal aortic endothelial cells.Science 1980;207:889–891.

    PubMed  Google Scholar 

  12. RADOMSKI J, JARRELL B, WILLIAMS S. Initial adherence of human capillary endothelial cells to Dacron.J Surg Res 1987;42:133–140.

    Article  PubMed  Google Scholar 

  13. HOCH J, DRYJSKI M, JARRELL B. In vitro endothelialization of an aldehyde-stabilized vessel.J Surg Res 1988;44:545–554.

    PubMed  Google Scholar 

  14. JARRELL B, WILLIAMS S, HOCH J, et al. Perspectives in vascular surgery-biocompatible vascular surfaces: the past and future role of endothelial cells.Bull NY Acad Med, Sec. series 1987;63:156–167.

    Google Scholar 

  15. HOCH J, JARRELL B, SCHMEIDER T, et al. Endothelial cell interactions with native surfaces.Ann Vasc Surg 1989;3:153–159.

    PubMed  Google Scholar 

  16. WHITTEMORE AD. Endothelial cell seeding: is it practical? In:Perspectives in Vascular Surgery Vol 2, No 2. St. Louis: Quality Medical Publishing, 1989, pp 126–131.

    Google Scholar 

  17. KOVEKER GB, BURKEL WE, GRAHAM LM, et al. Endothelial cell seeding of expanded polytetrafluoroethylene vena cava conduits: effects on luminal production of prostacyclin, platelet adherence and fibrinogen accumulation.J Vasc Surg 1987;7:600–605.

    Google Scholar 

  18. HERRING MB, COMPTON RS, LEGRAND DR, et al. Endothelial seeding of polytetrafluoroethylene popliteal bypasses. A preliminary report.J Vasc Surg 1987;6:114–118.

    Article  PubMed  Google Scholar 

  19. GRAHAM LM, VINTER DW, FORD JW, et al. Immediate seeding of enzymatically derived endothelium in Dacron vascular grafts. Early experimental studies with autologous canine cells.Arch Surg 1980;115:1289–1294.

    PubMed  Google Scholar 

  20. HERRING M, GARDNER A, GLOVER J. A single staged technique for seeding vascular grafts with autologous endothelium.Surgery 1978;84:498–504.

    PubMed  Google Scholar 

  21. WATKINS MT, SHAREFKIN JB, ZAJTCHUK R, et al. Adult human saphenous vein endothelial cells: assessment of their reproduce capacity for use in endothelial cell seeding of vascular prostheses.J Surg Res 1984;36:588–596.

    Article  PubMed  Google Scholar 

  22. SILLA R, FASOL R, KADLETZ M, et al. In vitro lining of ePTFE grafts with human saphenous vein endothelial cells. In: ZILLA, FASOL, DEUTSCH (eds).Endothelialization of Vascular Grafts: 1st European Workshop on Advanced Technologies in Vascular Surgery. Vienna: Karger-Basel 1987, pp 195–210.

    Google Scholar 

  23. BURKEL WE, VINTER DW, FORD JW, et al. Sequential studies of healing in endothelial seeded vascular prostheses: histologic and ultrastructure characteristics of graft incorporation.J Surg Res 1981;30:305–324.

    Article  PubMed  Google Scholar 

  24. STERPETTI AV, HUNTER WJ, SCHULTZ RD, et al. Seeding with endothelial cells derived from the microvessels of the omentum and from the jugular vein: a comparative study.J Vasc Surg 1988;7:677–684.

    Article  PubMed  Google Scholar 

  25. BOYD KL, SCHMIDT S, PIPPERT TR, et al. The effects of pore size and endothelial cell seeding upon the performance of small diameter ePTFE vascular grafts under controlled flow conditions.J Biomed Mat Res 1988;22:163–177.

    Article  Google Scholar 

  26. STANLEY JC, BURKEL WE, LINDBALD B. Endothelial cell seeding of synthetic vascular prostheses.Acta Chir Scand Suppl 1985;529:17–27.

    PubMed  Google Scholar 

  27. SHARP VM, SCHMIDT SP, DONOVAN DL. Prostaglandin biochemistry of seeded endothelial cells on Dacron prostheses.J Vasc Surg 1986;3:204–215.

    Article  PubMed  Google Scholar 

  28. SCHMIDT SP, HUNTER TJ, FALKOW LJ, et al. Effects of antiplatelet agents in combination with endothelial cell seeding on small diameter Dacron vascular graft performance in the canine carotid artery model.J Vasc Surg 1985;2:898–906.

    Article  PubMed  Google Scholar 

  29. BELDEN TA, SCHMIDT SP, FALKOW LJ, et al. Endothelial cell seeding of small diameter vascular grafts.Trans Am Soc Artif Intern Organs 1982;28:173–177.

    PubMed  Google Scholar 

  30. ALLEN VT, LONG J, CLARK R, et al. Influence of endothelial cell seeding on platelet deposition and patency in small diameter Dacron arterial grafts.J Vasc Surg 1984;1:224–232.

    Article  PubMed  Google Scholar 

  31. SCHMIDT SP, HUNTER TJ, SHARP WV, et al. Endothelial cell-seeded four millimeter Dacron vascular grafts.J Vasc Surg 1984;1:434–441.

    Article  PubMed  Google Scholar 

  32. SHAREFKIN JB, LATKER C, SMITH M, et al. Early normalization of platelet survival by endothelial seeding of Dacron arterial prostheses in dogs.Surgery 1982;92:385–393.

    PubMed  Google Scholar 

  33. ROSEMAN JE, KEMPCZINSKI RF, BERLATZKY Y, et al. Bacterial adherence to endothelial-seeded polytetrafluoroethylene grafts.Surgery 1985;98:816–823.

    PubMed  Google Scholar 

  34. SCHMIDT SP, MONAJJEM N, EVANSHO MM, et al. Microvascular endothelial cell seeding of small-diameter Dacron vascular grafts.J Invest Surg 1988;1:35–44.

    PubMed  Google Scholar 

  35. KOVEKER GB, PETZKE KH, BORG M, et al. Reduction of thrombogenicity in small diameter vascular prostheses seeded with autologous endothelial cells.Thorac Cardiovasc Surg 1986;34:49–51.

    PubMed  Google Scholar 

  36. HUNTER TJ, SCHMIDT SP, SHARP WV, et al. Controlled flow studies in 4 mm endothelialized Dacron grafts.Trans Am Soc Artif Intern Organs 1983;29:177–182.

    PubMed  Google Scholar 

  37. BIRINYI LK, DOUVILLE EC, LEWIS SA, et al. Increased resistance to bacteremic graft infection after endothelial cells.J Vasc Surg 1987;5:203–206.

    Article  PubMed  Google Scholar 

  38. BOYD KL, SCHMIDT SP, PIPPERT TR, et al. Endothelial cell seeding of ULTI carbon-coated small diameter ePTFE vascular grafts.ASAIO Trans 1987;33:631–635.

    PubMed  Google Scholar 

  39. SCHMIDT SP, HUNTER TJ, HIRKO M, et al. Small diameter vascular prostheses: two designs of ePTFE and endothelial cell seeded and nonseeded Dacron.J Vasc Surg 1985;2:292–297.

    Article  PubMed  Google Scholar 

  40. PLATE G, HOLLIER LJ, FOWL RJ, et al. Endothelial seeding of venous prostheses.Surgery 1984;96:929–936.

    PubMed  Google Scholar 

  41. WALKER MG, THOMSON GJL, SHAW JW. Endothelial cell seeded versus non-seeded ePTFE grafts in patients with severe peripheral vascular disease. In: ZILLA, FASOL, DEUTSCH (eds).Endothelialization of Vascular Grafts.1st European Workshop on Advanced Technologies in Vascular Surgery. Vienna: Karger-Basel, 1986, pp 245–248.

    Google Scholar 

  42. HERRING M, GARDNER A, GLOVER J. Seeding human arterial prostheses with mechanically derived endothelium. The detrimental effect of smoking.J Vasc Surg 1984;1:279–289.

    Article  PubMed  Google Scholar 

  43. ORTENWALL P, WADENVIK H, KUTTI J, et al. Reduction in deposition of indium 111-labeled platelets after autologous endothelial cell seeding in Dacron aortic bifurcation grafts in humans: a preliminary report.J Vasc Surg 1987;6:17–25.

    Article  PubMed  Google Scholar 

  44. RISBERG B, ORTENWALL P, WADENVILE H, et al. Endothelial cell seeding: experience and first clinical results in Gotchborg. In: ZILLA, FASOL, DEUTSCH (eds).Endothelialization of Vascular Grafts.1st European Workshop on Advanced Technologies in Vascular Surgery. Vienna: Karger-Basel, 1986, pp 225–232.

    Google Scholar 

  45. WAGNER R, KREINER R, BARNETT R, et al. Biochemical characterization and cytochemical localization of a catecholamine-sensitive adenylase cyclase in isolated capillary endothelium.Proceedings National Academy of Sciences, 1972;69:3175–3179.

    Google Scholar 

  46. JARRELL BE, WILLIAMS SK, CARABASI RA, et al. Immediate vascular graft monolayers using microvessel endothelial cells. In: HERRING M, GLOVER J (eds).Endothelial Seeding in Vascular Surgery. Orlando: Grune-Stratton, Inc. 1987, pp 37–55.

    Google Scholar 

  47. PEARCE WH, RUTHERFORD RB, WHITEHILL TA, et al. Successful endothelial seeding with omentally derived microvascular endothelial cells.J Vasc Surg 1987;5:203–206.

    Article  PubMed  Google Scholar 

  48. PARK P, JARRELL B, WILLIAMS SK, et al. Thrombusfree, human endothelial surface in the midregion of a Dacron vascular graft in the splanchnic venous circuit—observations after nine months of implantation.J Vasc Surg 1990;2:468–475.

    Article  Google Scholar 

  49. MARTINEZ-HERNANDEZ A. Methods for electron immunohistochemistry.Methods in enzymolygy, Vol 145. Orlando: Academic Press, 1987, pp 103–133.

    Google Scholar 

  50. NABEL EG, PLAUTZ G, BOYCE FM, et al. Recombinant gene expression in vivo within endothelial cells of the arterial wall.Science 1989;244:1342–1344.

    PubMed  Google Scholar 

  51. DICHEK DA, NEVILLE RF, ZWIVEL JA, et al. Seeding of intravascular stents with genetically engineered endothelial cells.Circulation 1989;80:1347–1353.

    PubMed  Google Scholar 

  52. EFRAT S, LINDE S, KOFOD H, et al. Beta-cell lines derived from transgenic mice expressing a hybrid insulin geneoncogene.Proc Natl Acad Sci USA 1988;85:9037–9041.

    PubMed  Google Scholar 

  53. STEIN R, HICKS BA, DEMETRIOUS AA. Use of genetically engineered pancreatic B cells in the treatment of experimentally induced diabetes. In: HARDY MA (ed).Xenograft 25. Amsterdam: Elsevier, 1989, pp 129–137.

    Google Scholar 

  54. ZIEBEL JA, FREEMAN SM, KANTOFF PW, et al. Highlevel recombinant gene expression in rabbit endothelial cells transfuced by retroviral vectors.Science 1989;243:220–222.

    PubMed  Google Scholar 

  55. BROTHERS T, STANLEY JC. Impact of genetic engineering on vascular disease and biology. In: VEITH FJ.Current Critical Problems in Vascular Surgery. Vol 2. Section 1:7.

  56. CALLOW AD. Impact of genetic engineering on vascular surgery. In: VEITH FJ.Current Critical Problems in Vascular Surgery. Vol 2. Section 1:8.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Carabasi, R.A., Williams, S.K. & Jarrell, B.E. Cultured and immediately procured endothelial cells: Current and future clinical applications. Annals of Vascular Surgery 5, 477–484 (1991). https://doi.org/10.1007/BF02133057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02133057

Key words

Navigation