Advertisement

Meccanica

, Volume 7, Issue 2, pp 80–86 | Cite as

On unsteady forced flow against a rotating disk

  • Ioan Pop
Article
  • 19 Downloads

Summary

The solution of unsteady forced flow against an unsteadily rotating disk is obtained when the outer flow and the angular velocity of the disk are expressed in powers series of √t. The solution is established by expanding the velocity components and the pressure in powers of small time. The extension of the obtained solutions is possible by using Zeytounian's technique. Finally, an analysis is made for the problem of the time-dependent flow due to an infinite rotating disk started accelerated from rest.

Keywords

Mechanical Engineer Civil Engineer Angular Velocity Velocity Component Power Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommario

La soluzione del flusso forzato contro un disco rotante in regime non permanente è ottenuta quando il flusso esterno e la velocità angolare del disco sono espresse in una serie di potenze √t. La soluzione è formulata esponendo la componente della velocità e la pressione in potenze di tempo piccolo. L'estensione delle soluzioni ottenute è possibile usando la tecnica di Zeytounian. Infine si fa l'analisi del flusso dipendente dal tempo dovuto a un disco rotante infinito accelerato dalla quiete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. H. Thiriot, Über die laminaire Anlaufströmung einer Flüssigkeit über einen rotierenden Boden bei plötzlicher Änderung des Drehungzustandes, ZAMM, 20, pp. 1–12, 1940.Google Scholar
  2. [2]
    S. D. Nigam,Rotation of an infinite plane lamina; boundary-layer growth; motion started impulsively from rest, Quart. Appl. Math., 9, pp. 88–91, 1951.Google Scholar
  3. [3]
    E. R. Benton,On the flow due to a rotating disk, J. Fluid Mech., 24, pp. 781–800, 1966.Google Scholar
  4. [4]
    G. M. Homsy andJ. L. Hudson,Transient flow near a rotating disk, Appl. Sci. Res., 18, pp. 384–397, 1968.Google Scholar
  5. [5]
    L. A. Rozin,Boundary layer growth due to an infinite disk and sphere rotating around an axis, Izv. Akad. nauk S.S.S.R. (OTN), Mekhanika i Mashinostr., No. 4, pp. 176–178, 1960 (in Russian).Google Scholar
  6. [6]
    Y. D. Wadhwa,Unsteady stagnation flow towards a rotating lamina, J. Sci. Engng. Resh., 7, pp. 259–266, 1963.Google Scholar
  7. [7]
    I. Pop,On unsteady stagnation flow towards a rotating lamina, Bull. Acad. Polonaise Sci., sér. Sci. Techn., 15 pp. 251–255, 1967.Google Scholar
  8. [8]
    I. Pop,On unsteady boundary layer due to a rotating disk, St. Cerc. Mecanica Apl., 25, pp. 689–695, 1967 (in Romanian).Google Scholar
  9. [9]
    R. Kh. Zeytounian, Sur une méthode de calcul de certains couches limites en régime instationnaire (fluide incompressible), C. R. Acad. Sc. Paris, 267, série A, pp. 37–39, 1968.Google Scholar
  10. [10]
    R. Kh. Zeytounian,Contribution à l'étude de la couche limite tridimensionnelle laminaire incompressible en régime instationnaire, Note Technique ONERA, No. 131, 1968.Google Scholar
  11. [11]
    R. Kh. Zeytounian, Etude de la conche limite thermique en évolution instationnaire (fluide incompressible), C. R. Acad. Sc. Paris, 268, série A, pp. 292–294, 1969.Google Scholar
  12. [12]
    L. G. Loitsianski,Aerodynamic boundary layer, Gostehizdat, Moskow, 1941 (in Russian).Google Scholar

Copyright information

© Tamburini Editore s.p.a 1972

Authors and Affiliations

  • Ioan Pop
    • 1
  1. 1.Faculty of Mathematics and MechanicsUniversity of ClujRomania

Personalised recommendations