Advertisement

Meccanica

, Volume 15, Issue 3, pp 154–165 | Cite as

A bifurcation problem involving elastica

  • B. Gabutti
  • P. Lepora
  • G. Merlo
Article
  • 40 Downloads

Summary

A flexible inextensible elastica has been considered, with fixed end points and fixed equal end slopes, and varying length. The existence of at least one elastic curve has been proved when the elastica length is greater than the distance between the end points. A critical value of the length has been found, as a function of the given end slope only, corresponding to some elastic curves. From each of them two new elastic curves branch when the length is greater than the critical value.

Keywords

Mechanical Engineer Civil Engineer Bifurcation Problem Elastic Curve Elastic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommario

Si consideri un filo flessibile ed inestensibile di lunghezza assegnata, vincolato agli estremi con angoli prefissati ϑ, − ϑ; 0<ϑ<π.

Vengono determinate le infinite configurazioni del filo aventi momento nullo agli estremi; ognuna di queste è caratterizzata dal numero di volte con cui la curva elastica attraversa il segmento congiungente gli estremi del filo. Allorché la lunghezza del filo viene perturbata si dimostra che in corrispondenza di ogni configurazione con momento nullo agli estremi (denominata «inflexional elastica» in [4]) nascono due nuove configurazioni del filo aventi agli estremi momento diverso da zero (denominate «non inflexional elastica» in [4]).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gabutti B., Lepora P., Merlo G.,Numerical soltuion of a large deflection problem, Comp. Meth. in Appl. Mech. and Eng., Vol. 6, N. 1, July 1975, pp. 31–48.Google Scholar
  2. [2]
    Hale J. K.,Ordinary Differential Equations, Wiley Interscence, New York, 1969.Google Scholar
  3. [3]
    Keller J. B. andAntman S.,Bifurcation Theory and Nonlinear Eigenvalue Problems, W.A. Benjamin, New York, 1969.Google Scholar
  4. [4]
    Love A. E. H.,A treatise on the mathematical theory of elasticity, Cambridge University Press, 1927.Google Scholar
  5. [5]
    Stakgold I.,Branching of solutions of nonlinear equations, SIAM Rewiew, Vol. 13, N. 3, July 1971, pp. 289–332.Google Scholar
  6. [6]
    Tricomi F. G.,Funzioni Ellittiche, 2 ed., Bologna, Zanichelli, 1951. (German ed., Leipzig, 1948).Google Scholar
  7. [7]
    Antman S.,The Theory of Rods, Handbuch der Physik, Vol. VI a/2, Springer-Verlag, Berlin-Heidelberg-New York, 1972.Google Scholar
  8. [8]
    Antman S.,Kirckhoff's problem for nonlinearly elastic rods, Quart. Appl. Math. 32 (1974) 221–240.Google Scholar
  9. [9]
    Euler L.,Additamentum i de curvis elasticis. Metodus inveniendi lineas curvas maximi minimi proprietate gaudentes, Lausanne, Opera Omnia 24, 1744, 231–297.Google Scholar

Copyright information

© Tamburini Editore 1980

Authors and Affiliations

  • B. Gabutti
    • 1
  • P. Lepora
  • G. Merlo
  1. 1.Researcher of Consiglio Nazionale delle Ricerche of Italy, at Istituto di Calcoli Numerici of Università di TorinoItaly

Personalised recommendations