Advertisement

Meccanica

, Volume 6, Issue 4, pp 253–257 | Cite as

On the stability of one-dimensional continuous systems with polygenic forces

  • H. H. E. Leipholz
  • K. Huseyin
Article

Summary

Using the energy theorem for polygenic systems, it is shown that polygenic systems of the divergence type are pseudoconservative. Hence, their Hamiltonian can be used as a Liapunov functional to investigate the stability of such systems. Furthermore, for polygenic divergence type systems, the eigenvalue curve is strictly monotonic and its first branch is always to the right of the first branch of the corresponding conservative system's eigenvalue curve. Hence, the first critical load of the corresponding conservative system is a lower bound for the first critical load of the polygenic divergence type system.

Keywords

Mechanical Engineer Civil Engineer Alla Critical Load Type System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommario

Attraverso il teorema energetico dei sistemi poligenici, si mostra che i sistemi poligenici di tipo divergenza sono pseudo-conservativi e quindi che il loro Hamiltoniano può essere usato come un funzionale alla Liapunov per studiare la stabilità di tali sistemi. Si mostra inoltre, sempre per i sistemi poligenici di tipo divergenza, che la curva degli autovalori è strettamente monotona e che il suo primo ramo è sempre alla destra del primo ramo della curva degli autovalori del corrispondente sistema conservativo. Dunque il primo carico critico del corrispondente sistema conservativo è un limite inferiore per il carico critico del sistema poligenico di tipo divergenza.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Lanczos,The variational principles of mechanics, University of Toronto Press, 4th ed., pp. 30, 85, 144, 146, 209, Toronto, 1970.Google Scholar
  2. [2]
    H. Goldstein,Classical Mechanics, Addison-Wesley Publ. Comp., 7th ed., pp. 353, 361, Reading, Massachusetts, Palo Alto, London, Dallas, Atlanta, 1965.Google Scholar
  3. [3]
    A. A. Movchan, PMM 23, pp. 483–493, 1959.Google Scholar
  4. [4]
    H. Leipholz,Application of Liapunov's direct method to the stability problem of rods subject to follower forces, in:Instability of continuous systems, pp. 1–10, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
  5. [5]
    K. Huseyin andH. H. E. Leipholz,Divergence instability of multiple-parameter circulatory systems, Report No. 69, Solid Mechanics Division, University of Waterloo, Waterloo, Ontario, Canada.Google Scholar

Copyright information

© Tamburini Editore 1971

Authors and Affiliations

  • H. H. E. Leipholz
    • 1
  • K. Huseyin
    • 1
  1. 1.Civil Engineering, Solid Mechanics DivisionUniversity of WaterlooWaterlooCanada

Personalised recommendations