Skip to main content
Log in

Nitric oxide: a synchronizing chemical messenger

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) has been recognized as a ubiquitous chemical messenger in a large number of different biological systems. Its chemical properties make it less specific and less controllable than practically any other neurotransmitter or hormone. In view of this, its extensive biological role as a chemical messenger seems surprising. It is suggested that the biological function of NO evolved early in the anaerobic stage of evolution. In view of its low molecular weight, limited interaction with water, and its electrical neutrality, which allow it to diffuse rapidly through the cytoplasm and biomembranes, it is suggested that the need for NO has been retained by and maintained in eukaryote cells because of its ability to affect many biochemical functions simultaneously, acting primarily as an intracellular synchronizing chemical messenger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anbar, M., Caviation during impact of liquid water on water: geochemical implications. Science161 (1968) 1343–1345.

    Article  CAS  PubMed  Google Scholar 

  2. Anbar M., Hyperthermia of the cancerous breast—analysis of mechanism. Cancer Lett.84 (1994) 23–29.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, I. C., Poth, M., Homstead, J., and Burdige, D., A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea, and the heterotrophic nitrifierAlcaligenes faecalis. Appl. envir. Microbiol.59 (1993) 3525–3533.

    Article  CAS  Google Scholar 

  4. Berdeaux, A., Nitric oxide: an ubiquitous messenger. [Review] Fundam. clin. Pharmac.7 (1993) 401–411.

    Article  CAS  Google Scholar 

  5. Blatter, L. A., and Wier, W. G., Nitric oxide decreases [Ca2+]i in vascular smooth muscle by inhibition of the calcium current. Cell Calcium15 (1994) 122–131.

    Article  CAS  PubMed  Google Scholar 

  6. Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., and Cohen, R. A., Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature368 (1994) 850–853.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Y., and Rosazza, J. P. N., A bacterial nitric oxide synthase from a Nocardia species. Biochem. biophys. Res. Commun.203 (1994) 1251–1258.

    Article  CAS  PubMed  Google Scholar 

  8. Clement, B., Schultze-Mosgau, M. H., and Wohlers, H., Cytochrome P450 dependent N-hydroxylation of a guanidine (debrisoquine), microsomal catalysed reduction and further oxidation of the N-hydroxy-guanidine metabolite to the urea derivative. Similarity with the oxidation of arginine to citrulline and nitric oxide. Biochem. Pharmac.46 (1993) 2249–2267.

    Article  CAS  Google Scholar 

  9. Cunha, F. Q., Moss, D. W., Leal, L. M., Moncada, S., and Liew, F. Y., Induction of macrophage parasiticidal activity byStaphylococcus aureus and exotoxins through the nitric oxide synthesis pathway. Immunology78 (1993) 563–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dawson, T. M., and Snyder, S. H., Gases as biological messengers: nitric oxide and carbon monoxide in the brain. [Review]. J. Neurosci.14 (1994) 5147–5159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diederich, D., Skopec, J., Diederich, A., and Dai, F. X., Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am. J. Physiol.266 (1994) H1153–1161.

    CAS  PubMed  Google Scholar 

  12. Elphick, M. R., Green, I. C., and O'Shea, M., Nitric oxide synthesis and action in an invertebrate brain. Brain Res.619 (1993) 344–346.

    Article  CAS  PubMed  Google Scholar 

  13. Faraci, F. M., and Brain, J. E., Jr., Nitric oxide and the cerebral circulation. [Review] Stroke25 (1994) 692–658.

    Article  CAS  PubMed  Google Scholar 

  14. Freeman, G., Dyer, R. L., Juhos, L. T., St. John, G. A., and Anbar M., Identification of nitric oxide (NO) in human blood. Archs envir. Health33 (1978) 19–23.

    Article  CAS  Google Scholar 

  15. Frings, J., Wondrak, C., and Schink B., Fermentative degradation of triethanolamine by a homoacetogenic bacterium. Archs Microbiol.162 (1994) 103–107.

    Article  CAS  Google Scholar 

  16. Gelperin, A., Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature369 (1994) 61–63.

    Article  CAS  PubMed  Google Scholar 

  17. Gerlach, H., Rossaint R., Pappert, D., Knorr, M., and Falke, K. J., Autoinhalation of nitric oxide after endogenous synthesis in nasopharynx. Lancet343 (1994) 518–519.

    Article  CAS  PubMed  Google Scholar 

  18. Gukovskaya, A., and Pandol, S., Nitric oxide production regulates cGMP formation and calcium influx in pancreatic acinar cells. Am. J. Physiol.266 (1994) G350-G356.

    CAS  PubMed  Google Scholar 

  19. Haber, F., and Weiss J., The catalytic decomposition of hydrogen peroxide by iron, salts. Proc. R. Soc. (London)A147 (1934) 332–338.

    Google Scholar 

  20. Harris N., Buller, RML, Karupiah G., Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. J. Virology62 (1995) 910–915.

    Article  Google Scholar 

  21. Haswell-Elkins, M. R., Satarug, S., Tsuda, M., Mairiang, E., Esumi, H., Sithithaworm, P., Mairiang, P., Saitoh, M., Yongvanit, P., and Elkins, D. B., Liver fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosation in human carcinogenesis. Mutat. Res.305 (1994) 241–252.

    Article  CAS  PubMed  Google Scholar 

  22. Henry, Y., Lepoivre, M., Drapier, J. C., Ducrocq, C., Boucher, J. L., and Guissani, A., EPR characterization of molecular targets for NO in mammalian cells and organelles. [Review] FASEB J.7 (1993) 1124–1134.

    Article  CAS  PubMed  Google Scholar 

  23. Klostergaard, J., Macrophage tumoricidal mechanisms. [Review] Res. Immun.144 (1993) 274–276.

    Article  CAS  Google Scholar 

  24. Kucera, I., Oscillations of nitric oxide concentration in the perturbed denitrification pathway ofParacoccus denitrificans. Biochem. J.286 (1992) 111–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuchan, M. J., and Frangos, J. A., Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol.266 (1994) C628-C636.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar, M., Lu, W. P., and Ragsdale, S. W., Binding of carbon disulfide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, carbon monoxide dehydrogenase, fromClostridium thermoaceticum. Biochemistry33 (1994) 9769–9777.

    Article  CAS  PubMed  Google Scholar 

  27. Lander, H. M., Sehajpal, P., Levine, D. M., and Novogrodsky A., Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. J. Immun.150 (1993) 1509–1516.

    Article  CAS  PubMed  Google Scholar 

  28. Langrehr, J. M., Hoffman, R. A., Lancaster, J. R. Jr., and Simmons R. L., Nitric oxide a new endogenous immunomodulator. [Review] Transplantation55 (1993) 1205–1212.

    Article  CAS  PubMed  Google Scholar 

  29. Lavnikova, N., Drapier, J. C., and Laskin D. L., A single exogenous stimulus activates resident rat macrophages for nitric oxide production and tumor cytotoxicity. J. Leukoc. Biol.54 (1993) 322–328.

    Article  CAS  PubMed  Google Scholar 

  30. Lowenstein, C. J., Dinerman, J. L., and Snyder, S. H., Nitric oxide: a physiologic messenger. [Review] Ann. Intern. Med.120 (1994) 227–237.

    Article  CAS  PubMed  Google Scholar 

  31. Lu, W. P., Jablonski, P. E., Rasche, M., Ferry, J. G., and Ragsdale, S. W., Characterization of the metal centers of the Ni/Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from Methanosarcina thermophila. J. biol. Chem.269 (1994) 9736–9742.

    Article  CAS  PubMed  Google Scholar 

  32. Magrinat, G., Mason, S. N., Shami, P. J., and Weinberg, J. B., Nitric oxide modulation of human leukemia cell differentiation and gene expression. Blood80 (1992) 1880–1884.

    Article  CAS  PubMed  Google Scholar 

  33. Maiese, K., Boniece, I. R., Skurat, K., and Wagner, J. A., Protein kinases modulate the sensitivity of hippocampal neurons to nitric oxide toxicity and anoxia. J. Neurosci.36 (1993) 77–87.

    CAS  Google Scholar 

  34. Maragos, C. M., Wang, J. M., Hrabie, J. A., Oppenheim, J. J., and Keefer, L. K., Nitrix oxide/nucleophile complexes inhibit the in vitro proliferation of A375 melanoma cells via nitric oxide release. Cancer Res.53 (1993) 564–568.

    CAS  PubMed  Google Scholar 

  35. Margulis, L., Symbiosis, and evolution. Scient. Am.225 (1971) 49–55.

    Article  Google Scholar 

  36. Martinez, A., Riverosmoreno V., Polak, J. M., Moncada, S., and Sesma, P., Nitric oxide (NO) synthase immunoreactivity in the starfish marthasterias glacialis. Cell Tissue Res.275 (1994) 599–603.

    Article  CAS  Google Scholar 

  37. Mittal, C. K., Nitric oxide synthase: involvement of oxygen radicals in conversion of L-arginine to nitric oxide. Biochem. biophys. Res. Commun.193 (1993) 126–132.

    Article  CAS  PubMed  Google Scholar 

  38. Moncada, S. and Higgs, A., The L-arginine-nitric oxide pathway. [Review] N. Engl. J. Med.329 (1993) 2002–2012.

    Article  CAS  PubMed  Google Scholar 

  39. Montague, P. R., Gancayc, C. D., Winn, M. J., Marchase, R. B. and Friedlander, M. J., Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science263 (1994) 973–977.

    Article  CAS  PubMed  Google Scholar 

  40. Murad, F., The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication. [Review] Recent Prog. Horm. Res.49 (1994) 239–248.

    CAS  PubMed  Google Scholar 

  41. Nowicky, A. V., and Bindman L. J., The nitric oxide synthase inhibitor, N-monomethyl-L-arginine blocks induction of a long-term potentiation-like phenomenon in rat medial frontal cortical neurons in vitro. J. Neurophysiol.70 (1993) 1255–1259.

    Article  CAS  PubMed  Google Scholar 

  42. Ohshima, H., and Bartsch, H., Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. [Review] Mutat. Res.305 (1994) 253–264.

    Article  CAS  PubMed  Google Scholar 

  43. Oremland, R. S., Miller, L. G., Culberstone C. W., Connell, T. L., and Jahnke, L., Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils. Appl. envir. Microbiol.60 (1994) 3640–3646.

    Article  CAS  Google Scholar 

  44. Ota, M., Crofton, J. T., Festavan, G. T., and Share, L., Evidence that nitric oxide can act centrally to stimulate vasopressin release. Neuroendocrinology57 (1993) 955–959.

    Article  CAS  PubMed  Google Scholar 

  45. Palmer, R. M., Ferrige, A. G. and Moncada, S., Nitric oxide release accounts for the biological activity of endotheliumderived relaxing factor. Nature327 (1987) 524–526.

    Article  CAS  PubMed  Google Scholar 

  46. Park, J. and Rikihisa, Y., L-arginine-dependent killing of intracellular Ehrlichia risticii by macrophages treated with gamma interferon. Infect. Immun.60 (1992) 3504–3508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Radomski, M. W. and Moncada, S., Regulation of vascular homeostasis by nitric oxide. [Review] Thromb. Haemost.70 (1993) 36–41.

    Article  CAS  PubMed  Google Scholar 

  48. Reif, D. W., and Simmons, R. D., Nitric oxide mediates iron release from ferritin. Archs Biochem. Biophys.283 (1990) 537–541.

    Article  CAS  Google Scholar 

  49. Salvemini, D., Mollace, V., Pistelli, A., Anggard, E., and Vane J., Cultured astrocytoma cells generate a nitric oxide-like factor from endogenous L-arginine and glyceryl trinitrate: effect of E. coli lipopolysaccharide. Br. J. Pharmac.106 (1992) 931–936.

    Article  CAS  Google Scholar 

  50. Sessa, W. C., The nitric oxide synthase family of proteins. [Review] J. Vasc. Res.31 (1994) 131–143.

    Article  CAS  PubMed  Google Scholar 

  51. Singh, H. B., and Kanakidou, M., An investigation of the atmospheric sources and sinks of methyl-bromide. Geophys. Res. Lett.20 (1993) 133–136.

    Article  CAS  Google Scholar 

  52. Spinella, M. and Bodnar, R. J., Nitric oxide synthase inhibition selectively potentiates swim stress antinociception in rats. Pharmac. Biochem. Behav.47 (1994) 727–733.

    Article  CAS  Google Scholar 

  53. Summersgill, J. T., Powell, L. A., Buster, B. L., Miller, R. D., and Ramirez, J. A., Killing of Legionella pneumophila by nitric oxide in gamma-interferon-activated macrophages. J. Leukoc. Biol.52 (1992) 625–629.

    Article  CAS  PubMed  Google Scholar 

  54. Taylor-Robinson, A. W., Liew, F. Y., Severn, A., Xu, D., McSorley, S. J., Garside, P., Pardon, J., and Phillips, R. S., Regulation of the immune response by nitric oxide differentially produced by T helper type1 and T helper type 2 cells. Eur. J. Immun.24 (1994) 980–984.

    Article  CAS  Google Scholar 

  55. Thomsen, L. L., Baguley, B. C., Rustin, G. J., and O'Reilly, S. M., Flavone acetic acid (FAA) with recombinant interleukin-2 (TIL-2) in advanced malignant melanoma. II: Induction of nitric oxide production. Br. J. Cancer.66 (1992) 723–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vincendeau, P., Daulouede S., Veyret, B., Darde, M. L., Bouteille, B., and Lemesre, J. L., Nitric oxide-mediated cytostatic activity onTrypanosoma brucei gambiense andTrypanosoma brucei brucei. Expl Parasit.75 (1992) 353–360.

    Article  CAS  Google Scholar 

  57. Weinberg, E. D., Iron depletion: a defense against intracellular infection and neoplasia. [Review] Life Sci.50 (1992) 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  58. Weiss, G., Goossen, B., Doppler, W., Fuchs, D., Pantopoulos, K., Werner-Felmayer, G., Wachter, H., and Hentze, M. W., Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J.12 (1993) 3651–3657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Werner-Felmayer G., Golderer, G., Werener, E. R., Grobner., P., Wachter, H., Pteridine biosynthesis and nitric oxide synthase inPhysarum Polycephalum. Biochem. J.304 (1994) 105–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wiklund, C. U., Olgart, C., Wiklund, N. P., and Gustafsson, L. E., Modulation of cholinergic and substance P-like neurotransmission by nitric oxide in the guinea-pig ileum. Br. J. Pharmac.110 (1993) 833–839.

    Article  CAS  Google Scholar 

  61. Wolf, G., Henschke, G., and Wurdig, S., Glutamate agonist-induced hippocampal lesion and nitric oxide synthase/NADPH-diaphorase: a light and electron microscopical study in the rat. Neurosci. Lett.161 (1993) 49–52.

    Article  CAS  PubMed  Google Scholar 

  62. Zhuo, M., Meller, S.T. and Gebhart, G. F., Endogenous nitric oxide is required for tonic cholinergic inhibition of spinal mechanical transmission. Pain54 (1993) 71–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anbar, M. Nitric oxide: a synchronizing chemical messenger. Experientia 51, 545–550 (1995). https://doi.org/10.1007/BF02128740

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02128740

Key words

Navigation