Approximate Inclusion-Exclusion


The Inclusion-Exclusion formula expresses the size of a union of a family of sets in terms of the sizes of intersections of all subfamilies. This paper considers approximating the size of the union when intersection sizes are known for only some of the subfamilies, or when these quantities are given to within some error, or both.

In particular, we consider the case when allk-wise intersections are given for everyk≤K. It turns out that the answer changes in a significant way aroundK=√n: ifK≤O(√n) then any approximation may err by a factor of θ(n/K 2), while ifK≥ Ω(√n) it is shown how to approximate the size of the union to within a multiplicative factor of\(1 \pm e^{ - \Omega (K/\sqrt n )} \).

When the sizes of all intersections are only given approximately, good bounds are derived on how well the size of the union may be approximated. Several applications for Boolean function are mentioned in conclusion.

This is a preview of subscription content, access via your institution.


  1. [1]

    N.Alon, and J.Hastad: Private communication. 1988.

  2. [2]

    M.Ajtai, and A.Wigderson: Deterministic simulation of probabilistic constant depth circuits, In 26 th Annual Symposium on Foundations of Computer Science, Portland, Oregon, (1985), 11–19.

  3. [3]

    C. E.Bonferroni: Teoria statistica delle classi e calcolo dell probabilita, Involume in onore di Ricardo Dalla Volta, Universita di Firenze, (1937), 1–62.

  4. [4]

    E. W.Cheney.:Approximation Theory, McGraw-Hill Book Co.,1966.

  5. [5]

    S. M. Kwerel: Most stringent bounds on aggregated probabilities of partially specified dependent probability systems,J. Am. Stat. Assoc. 70, (1975), 472–479.

    Google Scholar 

  6. [6]

    N.Nisan, and A.Wigderson: Hardness vs. randomness. In 29 th Annual Symposium on Foundations of Computer Science, White Plains, New York, October (1988), 2–12.

  7. [7]

    A. Prékopa: Boole-Bonferroni inequalities and linear programming,Operation Research 36, (1988), 145–162.

    Google Scholar 

  8. [8]

    Theodore J.Rivlin:An Introduction to the Approximation of Functions, Blaisdell Publishing Company,1969.

  9. [9]

    H, J.Ryser:Combinatorial mathematics, The Mathematical Association of America,1963.

  10. [10]

    L.G. Valiant: The complexity of computing the permanent,Theor. Comp. Sci.,8, (1979), 189–201.

    Article  Google Scholar 

Download references

Author information



Additional information

Partially supported by NSF 865727-CCR and ARO DALL03-86-K-017. Part of this work was done in U.C. Berkeley, supported by NSF CCR-8411954.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Linial, N., Nisan, N. Approximate Inclusion-Exclusion. Combinatorica 10, 349–365 (1990).

Download citation

AMS subject classification (1980)

  • 05 A 20