Water, Air, and Soil Pollution

, Volume 98, Issue 1–2, pp 141–166 | Cite as

A dynamic model for radionuclide transfer from water to freshwater fish

  • J. Garnier-Laplace
  • F. Vray
  • J. P. Baudin


A dynamic model for radionuclide transfer from water to fish is presented, from its design stages to itsin situ validation. Four steps are proposed in order to apply the model, for predictive purposes, to137Cs and106Ru in case of the Rhone (S.E. France), downstream of the Marcoule fuel reprocessing plant. The first step consists of an experimental laboratory study conducted on a species which is representative of the second order trophic level (Cyprinus carpio L.). Compartmental analysis then allows construction of the conceptual model of the organism. The number of compartments necessary to represent the organism and the kinetic parameters quantifying the transfer studied are estimated using a standardized procedure for the statistical processing of results. A numerical method which allows consideration of all the fluctuations recorded in the radionuclide concentration in the water during the exposure phase is shown. Direct137Cs transfer is modeled on the basis of a single compartment, characterized by the exchange kinetics constants A2=0.224 d−1 and λ2=0.0065 d−1. For106Ru, two compartments are necessary in order to model the exchange kinetics. They are characterized by the constants A1=1.319 d−1 and λ1=0.638 d−1, A2=0.198 d−1 and λ2=0.0261 d−1. For a theoretical fish having zero growth, and for constant concentration in water, these transfer kinetics lead to concentration factor values of 34 L Kg w.w.−1 for137Cs and 10 L Kg w.w.−1 for106Ru. The corresponding long biological half- lives are 106 days and 27 days. A different transfer model expression is necessary based on the radionuclide tissue distribution differences within the organism. The major distribution of the137Cs in muscle which is a growth target tissue, implies building the conceptual transfer model on the assumption of the proportionality between the mass of water intervening in the transfer and the mass of the organism. For the106Ru preferentially accumulating in a low growth organ (digestive tract), the basic assumption is that of the intervention of a constant mass of water in the transfer. The entire model,i.e. the basic assumption on the influence of the growth of the organism, the number of compartments, the kinetic parameters, was validated by adaptedin situ experimentation. The validation tested with a monthly time step was satisfactory for the two radionuclides.

Key words

dynamic transfer model 137Cs 106Ru carp validationin situ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amiard-Triquet, C.: 1979,Water, Air, and Soil Pollut. 12, 155.Google Scholar
  2. André, B. and Lascombe, C.: 1988,Qualité du fleuve Rhône. Synthèse des connaissances, Agence de l'eau Rhône-Méditerranée-Corse et Ministère de l'environnement, délégation Rhône-Méditerranée-Corse, Pierre-Bénite, p. 248.Google Scholar
  3. Anonymous: 1987,Guidelines for Calculating Derived Release Limits for Radioactive Material in Airborne and Liquid Effluents for Normal Operation of Nuclear Facilities, CAN-CSA-288.1-M87, Canadian Standards Association, Toronto, Ontario, Canada, p. 69.Google Scholar
  4. Aoyama, I. and Inoue, Y.: 1973,J. Radiat. Res. 14, 375.PubMedGoogle Scholar
  5. Badie, C., Belluau, M., Fernandez, J.-M. and Gontier, G.: 1985,Transferts aux organismes marins: analyse et synthèse des expérimentations menées au laboratoire de radioécologie marine de Toulon, CEA/EDF, La Seyne-sur-mer, p. 122.Google Scholar
  6. Baudin, J.-P.: 1985,Acta Oecol.-Oecologica, Applic. 6, 259.Google Scholar
  7. Baudin, J.-P.: 1987,Wat. Res. 21, 285.Google Scholar
  8. Baudin, J.-P. and Fritsch, A.-F.: 1987,Water, Air, and Soil Pollut. 36, 207.Google Scholar
  9. Baudin, J.-P., Fritsch, A.-F. and Georges, J.: 1990,Water, Air, and Soil Pollut. 51, 261.Google Scholar
  10. Baudin, J.-P. and Garnier-Laplace, J.: 1994,Arch. Environ. Contam. Toxicol. 27, 459.Google Scholar
  11. Bergström, U., and Nordlinder, S.: 1989,The Radioecology of Natural and Artificial Radionuclides, XVth regional congress of IRPA, 10– 14 September 1989, Visby, Gotland, Sweden, 283.Google Scholar
  12. Bergström, U., Sundblad, B., and Nordlinder, S.: 1994,Nordic Radioecology. The Transfer of Radionuclides Through Nordic Ecosystems to Man, H. Dahlgaard (ed.), Elsevier, p. 483.Google Scholar
  13. Bhagwab, S. S.: 1993,Watershed, river and lake modeling through environmental radioactivity, Environmental research and publications inc., Hamilton, Ontario, Canada, p. 227.Google Scholar
  14. Bidard, F. and Bardin, B.: 1987,Revue Générale Nucléaire 1, 24.Google Scholar
  15. Boxenbaum, H. G., Riegelman, S. and Elashoff, R. M.: 1974,J. Pharmacokin. Biopharm. 2, 123.Google Scholar
  16. Bruno, V.: 1991, Thèse Doct., Université Montpellier II, p. 228.Google Scholar
  17. Chappaz, R.: 1986, Thèse Doct. Spécialité, Université Aix-Marseille I, p. 158.Google Scholar
  18. Coppe, P.: 1993,Joint seminary from september 15 th to 18th 1992, Fribourg, Switzerland, Radioprotection, 185.Google Scholar
  19. Coughtrey, P. J. and Thorne, M. C.: 1983,Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems, A.A.Balkema, Rotterdam, p. 389.Google Scholar
  20. D'Aubenton, F. and Spillman, C. J.: 1975,La pisciculture française 43, 17.Google Scholar
  21. Distefano, J. J. and Landaw, E. M.: 1984,Stat. rep. 6, R651.Google Scholar
  22. Elliott, J. M., Elliott, J. A., and Hilton, J.: 1993,Annls Limnol. 29, 79.Google Scholar
  23. Foulquier, L.: 1979,Rapport CEA-BIB-231, Commissariat à l'Energie Atomique, Saclay, France, p. 360.Google Scholar
  24. Foulquier, L., 1987:Seminar C.E.C./J.E.N. International Union of Radioecologists, IX th Annual meeting, Extended Summaries of the Contributions, I.U.R. Secretariat ED., Madrid, September 15–19, 1986, 20. Foulquier, L. and Baudin, J.-P.: 1992,Revue Générale Nucléaire 2, 117.Google Scholar
  25. Foulquier, L. and Baudin-Jaulent, Y., 1990:Radioecology, High Tatras, Czechoslovakia, December 11–15, 1989.Google Scholar
  26. Foulquier, L., Garnier-Laplace, J., Descamps, B., Lambrechts, A. and Pally, M.: 1991,Hydroécol. appl. 3, 149.Google Scholar
  27. Foulquier, L., Garnier-Laplace, J., Lambrechts, A., Charmasson, S. and Pally, M., 1993:Environmental impact of nuclear installations, september 15th to 18th 1992, University of Fribourg Switzerland, 263.Google Scholar
  28. Fraizier, A., 1974:Comparative Studies of Food and Environmental Contamination, IAEA, Vienna, 135.Google Scholar
  29. Fritsch, A.-F.: 1985, Thèse Docteur — Ingénieur, Université Aix-Marseille II, p. 114.Google Scholar
  30. Garnier-Laplace, J.: 1991, Thèse Doct., Université Montpellier II, p. 198.Google Scholar
  31. Garnier-Laplace, J. and Baudin, J. P.: 1995,Final report of the rivers and reservoirs sub group of the “Validation of Environmental Model Prediction”, (VAMP) IAEA and CEC, Vienna.Google Scholar
  32. Goolish, E. M. and Adelman, I. R.: 1988,Can. J. Zool. 66, 2199.Google Scholar
  33. Guéguéniat, P.: 1977,Séminaire de radioécologie organisé par la Société Française de Radioprotection, 31 janvier — 4 février 1977, Cadarache, 22.Google Scholar
  34. Håkanson, L.: 1991,Ecometric and Dynamic Modelling, Springer Verlag, Berlin, p. 158.Google Scholar
  35. Huet, M.: 1970,Traité de pisciculture, Bruxelles, p. 718. International Atomic Energy Agency: 1982,Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Safety series, Vienna, p. 96.Google Scholar
  36. Kimura, Y. and Honda, H.: 1977,J. Radiat. Res. 18, 170.PubMedGoogle Scholar
  37. Koulikov, A. O. and Ryabov, I. N.: 1992,Sci. Total Environ. 112, 125.PubMedGoogle Scholar
  38. Lambrechts, A.: 1984, Thèse d'Université, Université Aix-Marseille I, p. 181.Google Scholar
  39. Lambrechts, A. and Foulquier, L.: 1987,J. Envir. Radioact. 5, 105.Google Scholar
  40. Le Fur, J.: 1989, Thèse Doct., Université Claude Bernard, Lyon I, p. 137.Google Scholar
  41. Luykx, F. and Fraser, G.: 1983,Radioactive Effluents from Nuclear Power Stations and Nuclear Fuel Reprocessing Plants in the European Community. Discharge Data 1976–1980, Radiological Aspects, p. 107.Google Scholar
  42. Marciulioniene, D. P., Duchauskene, D. R. and Polikarpov, G. G.: 1979,Ac. Sc. de la RSS de Lithuanie 2, 145.Google Scholar
  43. Meili, M.: 1991,The Chernobyl Fallout in Sweden, Moberg, L. (ed.), National Swedish Radiation Protection Institute, Stockholm, pp. 177–182.Google Scholar
  44. Muus, B. J. and Dahlström, P.: 1968,Guide des poissons d'eau douce et pêche, Delachaux and Niestlé SA, Neufchâtel, Suisse, p. 136.Google Scholar
  45. Nicolas, Y., Pont, D. and Lambrechts, A.: 1994,Environ. Biol. of Fishes 39, 399.Google Scholar
  46. Phillipot, J. C., 1988:IVème symp.internat. de Radioécologie, Cadarache, France, 14–18 mars 1988, 12.Google Scholar
  47. Poston, T. M. and Klopfer, D. C., 1986:A Literature Review of the Concentration Ratios of Selected Radionuclides in Freshwater and Marine Fish, Battelle, 49.Google Scholar
  48. Ribeyre, F. and Boudou, A.: 1980,Water, Air and Soil Pollut. 14, 349.Google Scholar
  49. Simmonds, J. R., Lawson, G., and Mayall, A.: 1995,Methodology for Assessing the Radiological Consequences of Routine Release of Radionuclide to the Environment, European Commission, Chilton, Great Britain, p. 351. Sombré, L.: 1988, Thèse Doct., Université Aix-Marseille I, p. 152.Google Scholar
  50. Tarr, B. D., Barron, M. G. and Hayton, W. L.: 1990,Environ. Toxicol. Chem. 9, 989.Google Scholar
  51. Timofeeva-Resovskaja, E. A., Timoffev-Resovskij, N. V., Getsova, A. B., Gileva, E. A., Jarova, T. V., Koulikova, G. M. and Milioutina, G. A.: 1960,Zoologich. Zh. 39, 1449.Google Scholar
  52. Ugedal, O., Jonsson, B., Njastad, O. and Naeumann, R.: 1992,Freshwat. Biol. 28, 165.Google Scholar
  53. Van Der Borght, O., Van Puymbroeck, S., Colard, J. and Bittel, R., 1974:Environmental Surveillance Around Nuclear Installations, Warsaw, 31.Google Scholar
  54. Vray, F.: 1994, Thèse Doct., Université Montpellier II, p. 377. Yamaoka, K., T., N. and Uno, T.: 1978,J. Pharmacokin. Biopharm. 6, 165.Google Scholar
  55. Zach, R.: 1982,Limcal: A Comprehensive Food Chain Model for Predicting Radiation Exposure to Man in Long-Term Nuclear Waste Management, AECL-6827, Atomic Energy of Canada Limited, Whiteshell Nuclear Research Establishment, Ontario, Canada, p. 61.Google Scholar
  56. Wiley, J., Warner, S.F. and Harrison, R.M. (eds.): 1994,Radioecology After Chernobyl. Biogeochemical Pathways of Artificial Radionuclides, Scope 50, Chichester, New-York, Brisbane, Toronto, Singapore, p. 327.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • J. Garnier-Laplace
    • 1
  • F. Vray
    • 1
  • J. P. Baudin
    • 2
    • 1
  1. 1.Institut de Protection et de Sûreté Nucléaire, Département de Protection de l'Environnement, Laboratoire de Radioécologie ContinentaleIPSN/CEA, centre de CadaracheSaint Paul lez Durance CédexFrance
  2. 2.Centre National de la Recherche ScientifiqueFrance

Personalised recommendations