Water, Air, and Soil Pollution

, Volume 98, Issue 1–2, pp 57–78 | Cite as

Evaluation of heavy metal remediation using mineral apatite

  • Xiaobing Chen
  • Judith V. Wright
  • James L. Conca
  • Loni M. Peurrung
Article

Abstract

The current study investigated the sorption and desorption of dissolved lead (Pb), cadmium (Cd) and zinc (Zn) from aqueous solutions and a contaminated soil by North Carolina mineral apatite. Aqueous solutions of Pb, Cd, and Zn were reacted with the apatite, followed by desorption experiments under a wide variety of pH conditions ranging from 3 to 12, including the extraction fluids used in the Toxicity Characteristic Leaching Procedure (TCLP) of the United States Environmental Protection Agency (US EPA). The sorption results showed that the apatite was very effective in retaining Pb and was moderately effective in attenuating Cd and Zn at pH 4–5. Approximately 100% of the Pb applied was removed from solutions, representing a capacity of 151 mg of Pb/g of apatite, while 49% of Cd and 29% of Zn added were attenuated, with removal capacities of 73 and 41 mg g−1, respectively. The desorption experiments showed that the sorbed Pb stayed intact where only 14–23% and 7–14% of the sorbed Cd and Zn, respectively, were mobilized by the TCLP solutions.

The apatite was also effective in removing dissolved Pb, Cd, and Zn leached from the contaminated soil using pH 3–12 solutions by 62.3–99.9, 20–97.9, and 28.6–98.7%, respectively. In particular, the apatite was able to reduce the metal concentrations in the TCLP-extracted soil leachates to below US EPA maximum allowable levels, suggesting that apatite could be used as a cost-effective option to remediating metal-contaminated soils, wastes, and/or water.

The sorption mechanisms are variable in the reactions between the apatite and dissolved Pb, Cd, and Zn. The Pb removals primarily resulted from the dissolution of the apatite followed by the precipitation of hydroxyl fluoropyromorphite. Minor otavite precipitation was observed in the interaction of the apatite with aqueous Cd, but other sorption mechanisms, such as surface complexation, ion exchange, and the formation of amorphous solids, are primarily responsible for the removal of Zn and Cd.

Key words

acid mine drainage desorption phosphate rock pollution control remediation technology soil and groundwater contamination sorption TLCP toxic metals waste management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschuler, Z. S.: 1980,Soc. Econ. Paleontol. Mineral. Spec. Publ. 29, 19.Google Scholar
  2. Baham, J. and Sposito, G.: 1986,J. Environ. Qual. 15, 239.Google Scholar
  3. Bero, B. N.: 1994, ‘Characterization of Lead Contaminated Soils and Evaluation of Vacuuming and X-Ray Fluorescence Techniques for Sampling Carpeted Surfaces’, PhD thesis, University of Idaho, Moscow, ID.Google Scholar
  4. Chen, X.-B., Wright, J. V., Conca, J. L. and Peurrung, L. M.:Environ. Sci. Technol., (in press).Google Scholar
  5. Chien, S. H., Clayton, W. R. and McClellan, G. H.: 1980,Soil Sci. Soc. Am. J. 44, 260.Google Scholar
  6. Gibbs, R. J.: 1971, in R. E. Carver (ed.),Procedures in Sedimentary Petrology, Wiley-Interscience, New York, p. 531.Google Scholar
  7. Kuo, S. and Baker, A. S.: 1980,Soil Sci. Soc. Am. J. 44, 969.Google Scholar
  8. Ma, Q. Y., Logan, T. J. and Traina, S. J.: 1995,Environ. Sci. Technol. 29, 1118.Google Scholar
  9. Ma, Q. Y., Logan, T. J., Traina, S. J. and Ryan, J. A.: 1994a,Environ. Sci. Technol. 28, 408.Google Scholar
  10. Ma, Q. Y., Traina, S. J., Logan, T. J. and Ryan, J. A.: 1993,Environ. Sci. Technol. 27, 1803.Google Scholar
  11. Ma, Q. Y., Traina, S. J., Logan, T. J. and Ryan, J. A.: 1994b,Environ. Sci. Technol. 28, 1219.Google Scholar
  12. McBride, M. B. and Blasiak, J. J.: 1979,Soil Sci. Soc. Am. J. 43, 866.Google Scholar
  13. Moody, T. E. and Wright, J.: 1995,Adsorption Isotherms: North Carolina Apatite Induced Precipitation of Lead, Zinc, Managanese and Cadmium from the Bunker Hill 4000 Soil, Technical Report BHI-00197, Bechtel Hanford, Inc., Richland, WA.Google Scholar
  14. Nriagu, J. O.: 1972,Inorganic Chemistry 11, 2499.Google Scholar
  15. Nriagu, J. O.: 1973a,Geochimica et Cosmochimica Acta 37, 367.Google Scholar
  16. Nriagu, J. O.: 1973b,Geochimica et Cosmochimica Acta 37, 1735.Google Scholar
  17. Nriagu, J. O.: 1974,Geochimica et Cosmochimica Acta 38, 887.Google Scholar
  18. Nriagu, J. O.: 1984, in Nriagu, J. O. and Moore, P. B. (eds.),Phosphate Minerals, Springer-Verlag, Berlin, p. 318.Google Scholar
  19. Peters, R. W. and Shem, L.: 1992,Environmental Progress 11, 234.Google Scholar
  20. Ruby, M. V., Davis, A. and Nicholson, A.: 1994,Environ. Sci. Technol. 28, 646.Google Scholar
  21. Santillan-Medrano, J. and Jurinak, J. J.: 1975,Soil Sci. Soc. Am. Proc. 39, 851.Google Scholar
  22. Schwartz, F. W. and Xu, Y.: 1992,Proc. of 85th Annual Meeting & Exhibition, Air Waste Management Association, Kansas City, MO.Google Scholar
  23. Sims, R.C.: 1990,J. Air Waste Manage. Assoc. 40, 704.PubMedGoogle Scholar
  24. Sposito, G.: 1986, in Davis, J. A. and Hayes, K. F. (eds.),Geochemical Processes at Mineral Surfaces, American Chemical Society Symposium Series 323, American Chemical Society, Washington, DC, p. 217.Google Scholar
  25. Stanforth, R. and Chowdhury, A.: 1994,Proc. of Federal Environmental Restoration III and Waste Minimization II Conference, New Orleans, LA.Google Scholar
  26. Suzuki, T., Hatsushika, T. and Hayakawa, Y.: 1981,J. Chem. Soc., Faraday Trans. I 77, 1059.Google Scholar
  27. Suzuki, T., Hatsushika, T. and Miyake, M.: 1982,J. Chem. Soc., Faraday Trans. I 78, 3605.Google Scholar
  28. Suzuki, T., Ishigaki, K. and Ayuzawa, N.: 1985,Chem. Eng. Commun. 34, 143.Google Scholar
  29. Suzuki, T., Ishigaki, K. and Miyake, M.: 1984,J. Chem. Soc., Faraday Trans. I 80, 3157.Google Scholar
  30. Takeuchi, Y. and Arai, H.: 1990,Journal of Chemical Engineering of Japan 23, 75.Google Scholar
  31. Takeuchi, Y., Suzuki, T. and Arai, H.: 1988,Journal of Chemical Engineering of Japan 21, 98.Google Scholar
  32. US EPA (United States Environmental Protection Agency): 1976,EPA570/9-76-003, Office of Water Supply.Google Scholar
  33. US EPA (United States Environmental Protection Agency): 1990,Federal Register 55, 11798.Google Scholar
  34. Vieillard, P. and Tardy, Y.: 1984, in Nriagu, J. O. and Moore, P.B. (eds.),Phosphate Minerals, Springer-Verlag, Berlin, p. 171.Google Scholar
  35. Wright, J.: 1990, in Carter, J. (ed.),Biomineralization: Patterns, Processes and Evolutionary Trends, Van Nostrand Reinhold, New York, p. 445.Google Scholar
  36. Wright, J., Schrader, H. and Holser, W. T.: 1987,Geochim. Cosmochim. Acta 51, 631.Google Scholar
  37. Xu, Y. and Schwartz, F. W.: 1994,Journal of Contaminant Hydrology 15, 187.Google Scholar
  38. Xu, Y., Schwartz, F. W. and Traina, S. J.: 1994,Environ. Sci. Technol. 28, 1472.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Xiaobing Chen
    • 1
  • Judith V. Wright
    • 2
  • James L. Conca
    • 2
  • Loni M. Peurrung
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandU.S.A.
  2. 2.UFA VenturesRichlandU.S.A.

Personalised recommendations