Skip to main content
Log in

Theoretical studies on heterogeneous deflagration Waves. 2. An approximate ordinary differential equation formulation of the problem

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Questa è la seconda di una serie di tre memorie dedicate all'analisi teorica della propagazione di onde eterogenee di deflagrazione. La teoria è di natura generale, ma per concretezza viene applicata al caso specifico di un propellente solido composito per endoreattori. Lo scopo finale della ricerca è di definire le condizioni necessarie per la stabilità statica e dinamica della propagazione di onde eterogenee di deflagrazione. Nella prima memoria è stato rivisto un modello abbastanza generale del problema basato su di una equazione differenziale alle derivate parziali. In questa seconda memoria il problema matematico è riformulato in termini di una equazione differenziale ordinaria. La fase gassosa è trattata secondo un modello di fiamma. Le ipotesi più importanti riguardano la fase gassosa quasi-stazionaria, la fase condensata otticamente opaca, lo strato reagente superficiale di spessore nullo e la temperatura ambiente costante. Sotto queste ipotesi si trova che la dinamica di una deflagrazione è retta da una equazione (approssimata) differenziale ordinaria nonlineare del primo ordine che descrive la storia della temperatura di superficie. Tale equazione permette di definire immediatamente le proprietà di stabilità di onde eterogenee di deflagrazione (terza memoria). Sono in corso di svolgimento le verifiche numeriche e sperimentali della teoria proposta.

Summary

This is the second of a three — part theoretical study on heterogeneous deflagration wave propagation. The theory is of a general nature; but specific reference to a composite solid rocket propellant is made. The ultimate objective of this line of research is to define conditions for statically and dynamically stable deflagration propagation. In the first paper, a quite general model of the problem in terms of a partial differential equation was shown. In this second paper, a transformation of the mathematical problem into an ordinary differential equation is performed. A flame model is used for the gas phase. The important assumptions made are: quasi-steady gas phase, optically opaque condensed phase; collapsed burning surface layer and constant ambient temperature. Under these assumptions, it is found that the dynamics of a deflagrating substance is governed by a nonlinear first order (approximate) ordinary differential equation in the unknown surface temperature history. From this, the stability features of heterogeneous deflagration waves are immediately defined (last part of the study). The theory is verified by computer and experimental work, presently under progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. De Luca L.,Theoretical Studies on Heterogeneous Deflagration Wawes. 1. A Partial Differential Equation Formulation of the Problem, Meccanica.

  2. De Luca L.,Theoretical Studies on Heterogeneous Deflagration Wawes. 3. Nonlinear Stability Analysis of Solid Propellant Combustion, to be submitted to Meccanica.

  3. De Luca L.,Solid Propellant Ignition and Other Unsteady Combustion Phenomena Induced by Radiation, Ph. D. Thesis, Aerospace and Mechanical Sciences Dept., Princeton University, 15 November 1976.

  4. De Luca L.,Instability of Heterogeneous Deflagration Waves, VI Symposium (International) on Detonation, San Diego (California) USA, 24–27 Aug. 1976, pp. 281–289.

  5. De Luca L.,,Galfetti L., Zanotti C.,Dynamic Extinction of Composite Solid Propellants, Israel Journal of Technology, Vol. 16, N. 6, pp. 159–168, 1978.

    Google Scholar 

  6. Goodman T. R.,Application of Integral Methods to Transient Nonlinear Heat Transfer, «Advances in Heat Transfer», Vol. 1, 1964, Academic Press, New York, pp. 51–122.

    Google Scholar 

  7. Peters N.,Theory of Heterogeneous Combustion Instabilities of Sperical Particles, XV Symposium (International) on Combustion, 1975, pp. 363–375.

  8. Kuo K. K.,Theory of Flame Front Propagation in Porous Propellant Charges under Confinement, Ph. D. Thesis, Aerospace and Mechanical Sciences Dept., Princeton University, August 1971.

  9. Peretz A., Caveny L. H., Kuo K. K., Summerfield M.,The Starting Transient of Solid Propellant Rocket Motors with High Internal Gas Velocities, Aerospace and Mechanical Sciences Dept., Report N. 1100, Princeton University, April 1973.

  10. Gostintsev Ya. A.,Method of Reduction to Ordinary Differential Equations in Problems of the Nonstationary Burning of Solid Propellants, «Combustion, Explosion and Shock Waves», Vol. 3, N. 3, pp. 355–361, 1967.

    Google Scholar 

  11. Librovich V. B.,The Ignition of Powders and Explosives, «Journal of Applied Mechanics and Technical Physics», N. 6, 1963, pp. 74–79.

  12. Rozenbad V. I., Averson A. E., Barzykin V. V., Merzhanov A. G.,Some Characteristics of Dynamic Ignition Regimes, «Combustion, Explosion and Shock Waves», Vol. 4, N. 4, pp. 494–500, 1968.

    Google Scholar 

  13. Istratov A. G., Librovich V. B., Novozhilov B. V.,An Approximate Method in the Theory of Unstead Burning Velocity of Powder, «Journal of Applied Mechanics and Technical Physics», N. 3, 1964. Translation AFSC N. FTD-MT-64-319, pp. 233–242.

  14. Gostintsev Yu. A., Margolin A. D.,On Nonstationary Burning of Powders, «Journal of Applied Mechanics and Technical Physics», N. 5, 1964.

  15. Gostintsev Yu. A., Margolin A. D.,Nonstationary Combustion of a Powder Under the Action of a Pressure Pulse, «Combustion, Explosion and Shcok Waves», Vol. 1, N. 2, pp. 69–75, 1965.

    Google Scholar 

  16. Novozhilov B. V.,Nonstationary Combustion of Solid Rockets Fuels, 1973. Translation AFSC N. FTD-MT-24-317-74.

  17. De Luca L., Raimondi V.,Influence of the Polynomial Order on the Transformation of a Burning Solid Propellant Partial Differential Equation into an Ordinary Differential Equation by Integral Method, in preparation.

  18. Summerfield M., Caveny L. H., Battista R. A., Kubota N., Gostintsev Yu. A., Isoda H.,Theory of Dynamic Extinguishment of Solid Propellants with Special Reference to Nonsteady Heat Feedback Law, «Journal of Spacecraft and Rockets», Vol. 8, N. 3, March 1971, pp. 251–258.

    Google Scholar 

  19. Merkle C. L., Turk S. L., Summerfield M.,Extinguishment of Solid Propellants by Rapid Depressurization, Princeton University, AMS Report N. 880, July 1969.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Support by CNPM (Centro di Studio per Ricerche sulla Propulsione e sull'Energetica) is gratefully aknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Luca, L. Theoretical studies on heterogeneous deflagration Waves. 2. An approximate ordinary differential equation formulation of the problem. Meccanica 13, 71–77 (1978). https://doi.org/10.1007/BF02128534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02128534

Keywords

Navigation