Skip to main content
Log in

Shock structure for heat conducting and viscid fluids

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si studia la struttura delle onde d'urto piane in una classe di teorie dei fluidi dissipativi che risolvono le note difficoltà delle equazioni di Navier-Stokes-Fourier per le onde sonore di alta frequenza e per le onde d'accelerazione.

Si dimostra che una soluzione unica, continua e stabile esiste solo per numeri di Mach sufficientemente piccoli.

Summary

The structure of plane steady shock waves is investigated for a class of theories of heat-conducting and viscid fluids which avoid the well-known difficulties of the Navier-Stokes-Fourier equations for high-frequency sound waves and acceleration waves.

It is demonstrated that a unique continuous and stable shock structure exists only for sufficiently low Mach numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Serrin P.,Mathematical Principles of Classical Fluid Mechanics, Handbuch der Physik VIII/1, Springer-Verlag, N.Y., 1959.

    Google Scholar 

  2. Truesdell C. A.,Termodinamica razionale, Accademia Nazionale dei Lincei, Roma, 1976.

    Google Scholar 

  3. Carrassi M. andMorro A., Il Nuovo Cimento,9B, 321, 1972.

    Google Scholar 

  4. Cattaneo C., Atti Sem. Mat. Fis. Modena,3, 3, 1948.

    Google Scholar 

  5. Müller I., Zeitschrift für physik,198, 329, 1967.

    Google Scholar 

  6. Dixon G.,Special Relativity, the foundation of macroscopic physics, Cambridge, 1978.

  7. Bampi F. andMorro A.,Nonstationary thermodynamics and wave propagation in heat conductive viscous fluids, University of Genova, preprint 1980.

  8. Jou D., Casas-Vazques J. andLebon G., J. Non-Equilibr. Thermodyn.,4, 349 (1979).

    Google Scholar 

  9. Müller I.,Zur Ausbreitungsgeschwindigkeit von Störungen in Kontinuierlichen Medien, Doctor Thesis, Darmstadt, 1966.

  10. Kranyš, Il Nuovo Cimento,8B, 417 (1972).

    Google Scholar 

  11. Israel W., Ann. Phys.,100, 310 (1976).

    Google Scholar 

  12. Israel W. andStewart J. M., Proc. R. Soc. London,A 365, 43 (1979).

    Google Scholar 

  13. Bampi F. andMorro A., J. Math. Phys.,21, 1201 (1980).

    Google Scholar 

  14. Grad H., Comm. Pure and Appl. Math., vol. V, 257 (1952).

    Google Scholar 

  15. Stewart J. M., Proc. R. Soc. Lond.A 357, 59 (1977).

    Google Scholar 

  16. Bampi F. andMorro A., Wave Motion,2, 153 (1980).

    Google Scholar 

  17. Gilbarg D. andPaolucci D., J. Rat. Mech. An.,2, 617 (1953).

    Google Scholar 

  18. Jeffrey A. andKakutani T., SIAM Review,14, 582 (1972).

    Google Scholar 

  19. Germain P., Rev. Mod. Phys.,32, 951 (1960).

    Google Scholar 

  20. Germain P.,Shock waves, Jump Relations, and Structure, Advances in Appl. Mech.,

  21. Lefschetz S.,Differential Equations: Geometric Theory, 2nd edition, New York.

  22. Linzer M. andHornig D. F., Phys. Fluids,6, 166 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by C.N.R., G.N.F.M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anile, A.M., Majorana, A. Shock structure for heat conducting and viscid fluids. Meccanica 16, 149–156 (1981). https://doi.org/10.1007/BF02128443

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02128443

Keywords

Navigation