Skip to main content
Log in

Cooling tower analysis by a finite element technique based on a modified hamilton's principle

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

IL presente lavoro consiste di una parte teorica ed una numerica. Loscopo della prima è la derivazione delle equazioni di moto, sia totali che incrementali, per una generale analisi non lineare dinamica di gusci sottili per mezzo del metodo degli elementi finiti. Una modifica del principio di Hamilton, che permette di considerare forze interne ed esterne non conservative, serve come veicolo per raggiungere questo obiettivo. Aspetti particolari di questa derivazione sono: (a) la considerazione di forze che si mantengono normali alla superficie del guscio durante la sua deformazione; (b) l'uso di moltiplicatori di Lagrange per soddisfare alle condizioni di continuità tra elementi contigui, non imposte «a priori».

Nella parte numerica, la formazione teorica è applicata all'analisi di torri di raffreddamento ad iperboloide. Per una torre soggetta a carico di vento vengono determinate, in regime quasistatico, lo stato di sollecitazione ed il valore critico della pressione. Viene poi analizzata la risposta ad azione sismiche mediante un nuovo algoritmo per la condensazione statica dei gradi di libertà non affetti da masse concentrate e per la successiva soluzione del problema degli autovalori.

Summary

The present paper consists of a theorethical and a numerical part. The purpose of the former is the derivation of total as well as incremental equations of motion for general nonlinear dynamic analysis of thin shells by the Finite Element Method. A modification of Hamilton's principle, permitting consideration of nonconservative internal and external forces, serves as the vehicle to meet this goal. Special features of the derivation are: (a) consideration of follower loads acting normally to the shell throughout the deformation history and (b) the use of Lagrangian multipliers in order to satisfy originally relaxed interelement continuity conditions.

In the numerical part of this paper the theorethical concept is applied to the analysis of cooling-tower shells. The numerical investigation covers solution of the quasistatic stress problem and determination of quasistatic buckling wind pressures for a cooling tower shell subjected to wind load as well as earthquake response analysis for another one. A novel scheme for static condensation of massless degrees of freedom is found to permit an effective solution of the eigenproblem, required as a prerequisite to obtain the earthquake response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gallagher R. H.,Finite Element Representations for Thin Shell Instability Analysis, IUTAM Symposium on Buckling of Structures, Haward University, Cambridge, Mass., 1974.

    Google Scholar 

  2. Committee of Inquiry into Collapse of Cooling Towers at Ferrybridge, Monday 1, November 1965. Report, London: Central Electricity Generating Board, London, 1965.

  3. Committee of Inquiry into Collapse of Cooling Tower at Ardeer Nylon Works, Ayrshire on Thursday, 27th September 1973. Report, London: Imperial Chemical Industries Limited, Millbank, London, 1975.

  4. Zerna W. (editor), Külturm-Symposium 1977. Volume 29/30 of Berichte aus dem Institut für Konstruktiven Ingegneurbau der Ruhr-Universität Bochum, Essen, 1977.

  5. Kratzig W. P., Peters H. L. andZerna W.,Naturzugkühltürme aus Stahlbeton-Derzeitiger Stand und Entwicklungsmöglichkeiten, Beton und Stahlbetonbau, Vol. 73, 1978, pp. 37–42.

    Google Scholar 

  6. Cole P. P., Abel J. F., andBillington D. P.,Buckling of Cooling-Tower Shells: State-of-the Art, Journal of the Structural Division, ASCE, Vol. 101, 1975, pp. 1185–1203.

    Google Scholar 

  7. Steimmetz R. L., Billington D. P., andAbel J. F.,Hyperbolic Cooling Tower Dynamic Response to Wind, Journal of the Structural Division, ASCE, Vol. 104, 1978, pp. 35–53.

    Google Scholar 

  8. Abel J. F., Cole P. P., andBillington D. P.,Maximum Seismic Response of Cooling Towers, Department of Civil and Geological Engineering Research Report No. 73-SM-1, Princeton University, March 1973.

  9. Gould P. L., Sen S. K., andSuryoutomo H.,Dynamic Analysis of Column-Supported Hyperboloidal Shells, Earthquake Engineering and Structural Dynamics, Vol. 2, 1974, 269–279.

    Google Scholar 

  10. Thomas G. R., andGallagher R. H.,A Triangular Thin Shell Finite Element: Linear Analysis, NASA Report No. CR-2482, 1975.

  11. Cedolin L., andGallagher R. H.,A Frontal-Based Solver for Frequency Analysis, International Journal for Numerical Methods in Engineering, Vol. 12, 1978, pp. 1659–1666.

    Article  Google Scholar 

  12. Haugeneder E., andMang H.,Admissible and Inadmissible Simplifications of Variational Methods in Finite Element Analysis, IUTAM Symposium on Variational Methods of Solids, Northwestern University, Evanston, Ill., 1978.

    Google Scholar 

  13. Cohen G. A.,Conservativeness of a Normal Pressure Field Acting on a Shell, AIAA Journal, Vol. 4, 1966, p. 1886.

    Google Scholar 

  14. Koiter W. T.,General Equations of Elastic Stability for Thin Shells, in Theory of Thin Shells, Univ. of Houston Press, 1967, pp. 187–230.

  15. Koiter W. T.,A Consistent First Approximation in the Theory of Thin Elastic Shells, Proceedings of IUTAM Symposium on Theory of Thin Elastic Shells, Amsterdam 1960.

  16. Clough R. W., andPenzien J.,Dynamics of Structures, McGraw-Hill, N.Y., 1975.

    Google Scholar 

  17. Loganathan K., Chang S. C., Gallagher R. H., andAbel J. F.,Finite Element Representation and Pressure Stiffness in Shell Stability Analysis, Int. J. Num. Meth. Engrg., to appear.

  18. Leipholz H.,Six Lectures on Stability of Elastic Systems, Second Edition, revised and englarged, Dept. of Civil Engrg., Solid Mechanics Division, University of Waterloo, Ontario, 1974.

    Google Scholar 

  19. Mang H. A.,Pressure Sitffness Matrix for a Shell with Loaded Free Edges, Int. J. Num. Meth. Engrg., to appear.

  20. Mang H., Gallagher R. H., Cedolin L., andTorzicky P.,Deformation und Stbilität windbeanspruchter Külturmschalen, Ingenieur-Archiv, Vol. 47, 1978, pp. 391–410.

    Article  Google Scholar 

  21. Cedolin L., Mang H. A., Torzicky P.,Cooling Tower Dynamic Analysis with Use of a Frontal Based Frequency Solver, Engineering Structures, to appear.

  22. Gould P. L., Suryoutomo H., andSen S. K.,Stresses in Columns-Supported Hyperboloidal Shells Subject to Seismic Loading, Earthquake Engineering and Structural Dynamics, Vol. 5, 1977, pp. 3–14.

    Google Scholar 

  23. Bathe K. J., andWilson E. L.,Numerical Methods in Finite Element Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mang, H.A., Cedolin, L. Cooling tower analysis by a finite element technique based on a modified hamilton's principle. Meccanica 13, 208–224 (1978). https://doi.org/10.1007/BF02128387

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02128387

Keywords

Navigation