Skip to main content
Log in

Linear and non-linear pulse propagation in fluid-filled compliant tubes

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si studiano le perturbazioni prodotte da impatto in tubi elastici riempiti di fluidi. Si assume che il diametro del tubo indeformato, lo spessore della parete e il modulo elastico del materiale del tubo siano funzioni della distanza misurata lungo la linea centrale del tubo. La versione linearizzata delle equazioni che governano il fenomeno è risolta con la trasformata di Laplace, invertita con un metodo approssimato. Il sistema originale non lineare delle equazioni è risolto numericamente con il metodo delle caratteristiche. Vengono rappresentate, per valori fissati del tempo e della coordinata assiale, le relazioni tra la velocità assiale del fluido e la coordinata assiale oltre alle relazioni fra velocità e tempo, sia per la teoria lineare sia per quella non lineare.

Summary

Here we study impact-initiated disturbances in fluid-filled elastic tubes. The undeformed tube diameter, wall thickness, and elastic modulus of the tube material are assumed to be functions of the distance along the centre line of the tube. The linearized version of the governing equations are solved by the Laplace transform, which is inverted by means of an approximate method. The original non-linear system of governing equations is solved numerically by the method of characteristics. Relationships between the axial fluid velocity and axial coordinate as well as between velocity and time are displayed for fixed values of time and axial coordinate respectively for the linear and nonlinear theory for ease of comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

x :

axial coordinate

t :

time variable

v :

axial fluid velocity

A :

cross-sectional area of tube

ρ :

fluid density

D 0,D :

undeformed and deformed tube diameter

p :

fluid pressure

τ ω :

shearing stress

μ :

fluid viscosity

E :

Young's modulus

h :

tube wall thickness

c :

wave speed

L :

phase

Ψ :

confluent hypergeometric function

References

  1. Kenner T.,Flow and Pressure in the Arteries, in Biomechanics its Foundations and Objectives, Y.C. Fung, N. Perrone, and M. Anliker, Ed., Prentice-Hall, Englewood Cliffs, 1972.

    Google Scholar 

  2. Rundiger G.,Review of Current Mathematical Methods for Analysis of Blood Flow, in Biomedical Fluid Mechanics Symposium, ASME 1966.

  3. Rogers C. andClements D. L.,Wave propagation in fluid-filled tubes, Acta Mech. 22, 1975.

  4. Moodie T. B. andBarclay D. W.,Wave propagation in inhomogeneous variable section viscoelastic bars, Acta Mech. 23, 199, 1975.

    Google Scholar 

  5. Bickford W. B.,A note on rational approximations of transcendental functions, SAMP 17, 362, 1966.

    Google Scholar 

  6. Lister A.,The Numerical Solution of Hyperbolic Partial Differential Equations by the Method of Characteristics, in Mathematical Methods for Digital Computers, Vol. 1, A. Ralston and H. Wilf, Ed. John Wiley and Sons, New York, 1960.

    Google Scholar 

  7. Teipel I.,Nichtlineare wellenausbrëitungsvorgange in elastischen leitungen, Acta Mech. 16, 93, 1973.

    Google Scholar 

  8. Middleman S.,Transport Phenomena in the Cardiovascular System, John Wiley and Sons, New York, 1972.

    Google Scholar 

  9. Mohan V.,On the Analytical and Numerical Investigation of Some Problems Involving Rheological Behaviour of Casson Fluid, Department of Mathematics, I.I.T. Bombay, 1977.

    Google Scholar 

  10. Eason G.,Wave propagation in inhomogeneus elastic media, solution in terms of Bessel functions, Acta Mech. 7, 137, 1969.

    Google Scholar 

  11. Erdelyi A. et al.,Higher Transcendental Functions, Vol. 1 McGraw-Hill New York, 1953.

    Google Scholar 

  12. Mirsky P.,Pulse Velocities in Initially Stressed Cylindrical Rubber Tubes, Bull. Math. Biophys. 30, 299, 1968.

    Google Scholar 

  13. Flaud P. et al.,Experimental Study of Wave Propagation Through Viscous Fluid Contained in Viscoelastic Cylindrical Tube Under Static Stresses, Biorheology Vol. 12, pp. 347–354, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barclay, D.W., Moodie, T.B. & Madan, V.P. Linear and non-linear pulse propagation in fluid-filled compliant tubes. Meccanica 16, 3–9 (1981). https://doi.org/10.1007/BF02128301

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02128301

Keywords

Navigation