Meccanica

, Volume 18, Issue 4, pp 205–216 | Cite as

On wind wave kinematics

  • Paolo Boccotti
Article
  • 20 Downloads

Summary

Longuet-Higgins' theory of sea waves[1] is analyzed (up to the second order) for studying some kinematic properties of wind waves. For this purpose the space-time correlation is used. It is linearly dependent on a gravity wave field, reflecting the essential features of the actual field.

Keywords

Mechanical Engineer Civil Engineer Essential Feature Gravity Wave Wave Field 

Sommario

La teoria delle onde di mare di Longuet-Higgins[1] viene analizzata (fino al secondo ordine) per studiare alcune proprietà cinematiche delle onde generate dal vento. Per questo scopo si usa la correlazione spazio-temporale. Essa è direttamente proporzionale ad un campo di onde gravitazionali che rispecchia le proprietà essenziali del campo attuale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Longuet-Higgins M.S.,The effects of non linearities on statistical distributions in the theory of sea waves, J. Fluid Mech., 17, 459–480, 1963.Google Scholar
  2. [2]
    Mollo-Christensen E., andRamamonjiarisoa A.,Modeling the presence of wave groups in a random field, J. Geophys. Res., 83, 4117–4122, 1978.Google Scholar
  3. [3]
    Hasselman K. et al.,Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deut Hydrogr. Zeit., Suppl. A, 8, 12, 1973.Google Scholar
  4. [4]
    Eckart C.,The theory of noise in continuous media, J. Acoust. Soc. Amer., 25(2), 195–199, 1953.Google Scholar
  5. [5]
    Medwin H. et al.,Traveling correlation function of the heights of wind-blown water waves, J. Geophys. Res., 75, 4519–4524, 1970.Google Scholar
  6. [6]
    Ramamonjiarisoa A., andCoantic M.,Loi expérimentale par le vent sur une faible longeur d'action, C.R. Acad. Sc. Paris, 282, B, 111–114, 1976.Google Scholar
  7. [7]
    Rye H., andSvee R.,Parametric representation of a wind-wave field, Proc. 15th Coast. Eng. Conference, 183–197, 1976.Google Scholar
  8. [8]
    Stoker J.J.,Water Waves, Interscience Publ. LTD, London, pp. 567, 1957.Google Scholar
  9. [9]
    Tayfun M.A.,Narrow-band nonlinear sea waves, J. Geophys. Res., 85, 1548–1552, 1980.Google Scholar

Copyright information

© Pitagora Editrice Bologna 1983

Authors and Affiliations

  • Paolo Boccotti
    • 1
  1. 1.Istituto di IdraulicaUniversità degli Studi di GenovaItaly

Personalised recommendations