Skip to main content
Log in

A numerical program for dealing with finite-amptlitude disturbances in plane parallel laminar flows

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Il comportamento delle perturbazioni periodiche di ampiezza finita nei moti laminari piani viene studiatò con un metodo numerico che somiglia ad una simulazione.

Sostanzialmente non viene fatta l'ipotesi che le perturbazioni dipendano dal tempo tramite una velocità di fase costante ed una ampiezza di tipo esponenziale; ipotesi che conduce nel caso lineare alle note equazioni di Örr-Sommerfeld.

Si deve così risolvere un sistema di equazioni non lineari alle derivate parziali sia rispetto al tempo che alla coordinata ortogonalle alla parete con condizioni sulle pareti che sono state generalizzate per pareti ondulate con scanalature ortogonali al moto, anche dipendenti dal tempo.

Le equazioni del moto si riducono ad un sistema ordinario di equazioni differenziali se si esprimono le derivate parziali tramite delle differenze finite. La loro integrazione rispetto al tempo è fatta col metodo di Runge Kutta-Gill del quarto ordine.

Si possono così studiare anche perturbazioni lontane dalla curva di neutralità. Come esempio si studia il flusso piano di Poiseuille ad un basso numero di Reynolds.

Summary

For plane flows the behaviour of finite-amplitude disturbances, periodic in the direction of motion, is studied here in a way which is somehow similar to a numerical simulation. In fact the foundamental hypothesis which in the linear approach conducts for transverse disturbances to the well known Örr-Sommerfeld system of equations — namely that the periodic disturbance depends on time both by an exponential factor for the amplitude and a constant velocity for the phase — is not made here.

This requires to solve a system of non-linear partial differential equations respect both to time and to the space coordinate orthogonal to the wall(s).

Boundary conditions are written also for walls wavy in the transverse sense.

Solution is found integrating step-by-step with a Runge-Kutta procedure and respect to time a system of ordinary first order differential equations obtained using a finite difference approximation for space derivatives.

The method allows to study also disturbances far from the neutral ones and to have detailed information on their interaction with main flow.

As an example plane Poiseuille flow at a low Reynolds number is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. C. Lin,The theory of hydrodynamic stability, Cambridge, 1955.

  2. LordRayleigh (J. W. Strutt),On the question of stability of the flow of fluids, Scientific papers, Cambridge University Press, 3, 575, 1892.

    Google Scholar 

  3. N. H. Thomas,The stability of plane Poiseuille flow, Phys. Rev., 91, 780, 1953.

    Google Scholar 

  4. D. Meskyn andJ. T. Stuart,Stability of viscous motion between parallel planes for finite disturbances, Proc. Roy. Soc. A., 208, 517, 1951.

    Google Scholar 

  5. J. T. Stuart,On the non-linear mechanics of wave disturbances in stable and unstable parallel flows, J. Fluid Mech., 9, 353, 1960.

    Google Scholar 

  6. J. T. Stuart,On three-dimensional non-linear effects in the stability of parallel flows, Adv. in Aer. Sciences, vol. III-IV, Pergamon Press, 1962.

  7. A. J. Reynolds,The swimming of minute organisms, J. Fluid Mech., 23, 241, 1965.

    Google Scholar 

  8. J. L. Lions andG. Prodi,Un theoreme d'existence et d'unicité dans les équations de Navier-Stokes en dimension 2, Comptes Rendus Ac. Sc., 248, p. 3519, 1959.

    Google Scholar 

  9. G. Prodi,On probability measures related to the Navier-Stokes equations in the 3-dimensional case, Technical note no. 2, Contract Nr. AF 61 (052), 414, 1961.

    Google Scholar 

  10. H. Greenspan, W. Hafner andM. Ribarič,On varying stepsize in numerical integration of first order differential equations. Numerische Math., 7, 286, 1965. Comment byM. Morduchow, in Appl. Mech. Rev.4, 296, no. 2016, 1966.

    Google Scholar 

  11. I. Babuška, M. Pràger andE. Vitàsek,Numerical processes in differential equations, p. 89, Interscience Publ., 1966.

  12. L. Collatz,Numerische Behanlung von Differentialgleichungen, 2 Auf., p. 68, Springer, 1955.

  13. R. Grohne,Ueber das Spektrum bei Eigenschwingungen ebener laminar Stromungen, Z. angew. Math. und Mech., 35, 344, 1954.

    Google Scholar 

  14. W. Tollmien,Corso sulla teoria della turbolenza, C.I.M.E., Varenna, vol. II, 1957.

  15. S. F. Shen,Stability of laminar flows, Section G of “Theory of laminar flows”, edited by F. K. Moore, Princeton, 1964.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been performed within the research group no. 7 of Consiglio Nazionale delle Ricerche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellomo, E. A numerical program for dealing with finite-amptlitude disturbances in plane parallel laminar flows. Meccanica 2, 95–108 (1967). https://doi.org/10.1007/BF02128161

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02128161

Keywords

Navigation