Advances in Computational Mathematics

, Volume 6, Issue 1, pp 263–279 | Cite as

The stability of boundary conditions for an angled-derivative difference scheme

  • K. W. Morton
  • N. A. Burgess
Article

Abstract

Tidal forcing of the shallow water equations is typical of a class of problems where an approximate equilibrium solution is sought by long time integration of a differential equation system. A combination of the angled-derivative scheme with a staggered leap-frog scheme is sometimes used to discretise this problem. It is shown here why great care then needs to be taken with the boundary conditions to ensure that spurious solution modes do not lead to numerical instabilities. Various techniques are employed to analyse two simple model problems and display instabilities met in practical computations; these are then used to deduce a set of stable boundary conditions.

Keywords

numerical stability Godunov-Ryabenkii conditions initial boundary value problem angled-derivative difference scheme tidally-forced shallow water equations 

AMS subject classification

64N99 65L10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Beam and R. F. Warming, An implicit finite-difference algorithm for hyperbolic systems in conservation law form, J. Comput. Phys. 22 (1976) 87–110.CrossRefGoogle Scholar
  2. [2]
    N. Burgess, Stable boundary conditions for the shallow water equations, Ph.D. thesis, Oxford University Computing Laboratory (1987).Google Scholar
  3. [3]
    N. A. Edwards, C. P. Please and R. W. Preston, Some observations on boundary conditions for the shallow water equations in two space dimensions, IMA J. Numer. Anal. 30 (1983) 161–172.Google Scholar
  4. [4]
    N. A. Edwards and R. W. Preston, Grid scale oscillation in FLOW — the C.E.R.L. shallow water solver, C.E.R.L. Report TPRD/L/2779/N84 (1984).Google Scholar
  5. [5]
    M. G. Foreman, An accuracy analysis of boundary conditions for the forced shallow water equations, J. Comput. Phys. 64 (1986) 334.CrossRefGoogle Scholar
  6. [6]
    S. K. Godunov and V. S. Ryabenkii,The Theory of Difference Schemes — An Introduction (North-Holland, Amsterdam, 1964).Google Scholar
  7. [7]
    B. Gustafsson, H.-O. Kreiss and A. Sundström, Stability theory of difference approximations for mixed initial boundary value problems II, Math. Comp. 26(119) (1972) 649–686.Google Scholar
  8. [8]
    J. G. Heywood and R. Rannacher, Finite element approximations of the Navier-Stokes problem. Part II: Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal. 23 (1966) 750–777.CrossRefGoogle Scholar
  9. [9]
    R. L. Higdon, Initial-boundary value problems for linear hyperbolic systems, SIAM Rev. 28(2) (1986) 177–217.CrossRefGoogle Scholar
  10. [10]
    K. W. Morton, Initial-value problems by finite difference and other methods, in:The State of the Art in Numerical Analysis, Proceedings of the IMA Conference, York, 1976, ed. D. A. H. Jacobs (Academic Press, 1977) pp. 699–756.Google Scholar
  11. [11]
    R. D. Richtmyer and K. W. Morton,Difference Methods for Initial-Value Problems (Wiley-Interscience, 2nd ed., 1967); reprint edition (Krieger Publishing Company, Malabar, 1994).Google Scholar
  12. [12]
    K. V. Roberts and N. O. Weiss, Convective difference schemes, Math. Comp. 20(94) (1966) 272–299.Google Scholar
  13. [13]
    G. Strang, Wiener-Hopf difference equations, J. Math. Mech. 13(1) (1964) 85.Google Scholar
  14. [14]
    G. Strang, Implicit difference methods for initial-boundary value problems, J. Math. Anal. Appl. 16 (1966) 188.CrossRefGoogle Scholar
  15. [15]
    L. N. Trefethen, Group velocity interpretation of the stability theory of Gustafsson, Kreiss, and Sundström, J. Comput. Phys. 49 (1983) 199–217.CrossRefGoogle Scholar
  16. [16]
    S. Wardrop, The computation of equilibrium solutions of forced hyperbolic partial differential equations, Ph.D. thesis, Oxford University Computing Laboratory (1990).Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • K. W. Morton
    • 1
  • N. A. Burgess
    • 2
  1. 1.Oxford University Computing LaboratoryOxfordUK
  2. 2.ICI Chemicals & Polymers LimitedWiltonUK

Personalised recommendations