A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type

This is a preview of subscription content, access via your institution.

References

  1. [1]

    A.M.P. Memo. No. 131. IM: Title “On the solution of certain boundary problems”.

  2. [2]

    C. H. Bamford, J. Crank and D. H. Malan, Proc. Cambridge Phil. Soc. 42 (1946) 166.

    Google Scholar 

  3. [3]

    N. R. Eyres, D. R. Hartree et al., Philos. Trans. A 240 (1946) 1.

    Google Scholar 

  4. [4]

    D. R. Hartree and J. R. Womersley, Proc. Roy. Soc. A 161 (1937) 353.

    Google Scholar 

  5. [5]

    R. Jackson, R. J. Sarjant, J. B. Wagstaff, N. R. Eyres, D. R. Hartree and J. Ingham, The Iron and Steel Institute, Paper No. 15/1944 of the Alloy Steels Research Committee (1944).

  6. [6]

    Levy and Baggott,Numerical Studies in Differential Equations, Chapter IV.

  7. [7]

    A. N. Lowan, Amer. J. Math. 56(3) (1934) 396.

    MathSciNet  Google Scholar 

  8. [8]

    L. F. Richardson, Philos. Trans. A 210 (1910) 307.

    Google Scholar 

  9. [9]

    L. F. Richardson, Philos. Trans. A 226 (1927) 299.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

This paper is reprinted from Proc. Camb. Phil. Soc. 43 (1947) 50–67 with kind permission of the publisher

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Crank, J., Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv Comput Math 6, 207–226 (1996). https://doi.org/10.1007/BF02127704

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Numerical Evaluation
  • Practical Method