Skip to main content
Log in

A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type

Advances in Computational Mathematics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A.M.P. Memo. No. 131. IM: Title “On the solution of certain boundary problems”.

  2. C. H. Bamford, J. Crank and D. H. Malan, Proc. Cambridge Phil. Soc. 42 (1946) 166.

    Google Scholar 

  3. N. R. Eyres, D. R. Hartree et al., Philos. Trans. A 240 (1946) 1.

    Google Scholar 

  4. D. R. Hartree and J. R. Womersley, Proc. Roy. Soc. A 161 (1937) 353.

    Google Scholar 

  5. R. Jackson, R. J. Sarjant, J. B. Wagstaff, N. R. Eyres, D. R. Hartree and J. Ingham, The Iron and Steel Institute, Paper No. 15/1944 of the Alloy Steels Research Committee (1944).

  6. Levy and Baggott,Numerical Studies in Differential Equations, Chapter IV.

  7. A. N. Lowan, Amer. J. Math. 56(3) (1934) 396.

    MathSciNet  Google Scholar 

  8. L. F. Richardson, Philos. Trans. A 210 (1910) 307.

    Google Scholar 

  9. L. F. Richardson, Philos. Trans. A 226 (1927) 299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is reprinted from Proc. Camb. Phil. Soc. 43 (1947) 50–67 with kind permission of the publisher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crank, J., Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv Comput Math 6, 207–226 (1996). https://doi.org/10.1007/BF02127704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02127704

Keywords

Navigation