Combinatorica

, Volume 8, Issue 3, pp 293–295 | Cite as

Edge coloring of hypergraphs and a conjecture of ErdÖs, Faber, Lovász

  • W. I. Chang
  • E. L. Lawler
Note

Abstract

Call a bypergraphsimple if for any pairu, v of distinct vertices, there is at most one edge incident to bothu andv, and there are no edges incident to exactly one vertex. A conjecture of Erdős, Faber and Lovász is equivalent to the statement that the edges of any simple hypergraph onn vertices can be colored with at mostn colors. We present a simple proof that the edges of a simple hypergraph onn vertices can be colored with at most [1.5n-2 colors].

AMS subject classification (1980)

05 C 15 05 C 65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.Erdős, Problems and results in graph theory and combinatorial analysis,in: Graph Theory and Related Topics (J. A. Bondy and U. S. R. Murty, eds.), Academic Press, (1978), 153–163.Google Scholar
  2. [2]
    P. Erdős, On the combinatorial problems which I would most like to see solved,Combinatorica 1 (1981), 25–42.Google Scholar
  3. [3]
    P.Erdős, Selected problems,in: Progress in Graph Theory (J. A. Bondy and U. S. R. Murty, eds.), Academic Press, (1984), 528–531.Google Scholar
  4. [4]
    N. Hindman, On a conjecture of Erdős, Faber and Lovász aboutn-colorings,Canadian J. Math. 33 (1981), 563–570.Google Scholar
  5. [5]
    P. D. Seymour, Packing nearly-disjoint sets,Combinatorica 2 (1982), 91–97.Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • W. I. Chang
    • 1
  • E. L. Lawler
    • 1
  1. 1.Computer Science DivisionUniversity of CaliforniaBerkeleyUSA

Personalised recommendations