Ramanujan graphs

Abstract

A large family of explicitk-regular Cayley graphsX is presented. These graphs satisfy a number of extremal combinatorial properties.

  1. (i)

    For eigenvaluesλ ofX eitherλ=±k or ¦λ¦≦2 √k−1. This property is optimal and leads to the best known explicit expander graphs.

  2. (ii)

    The girth ofX is asymptotically ≧4/3 log k−1 ¦X¦ which gives larger girth than was previously known by explicit or non-explicit constructions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N.Alon,Private communication 1986.

  2. [2]

    N. Alon, Eigenvalues, geometric expanders, sorting in rounds and Ramsey theory,Combinatorica,6 (1986), 207–219.

    Google Scholar 

  3. [3]

    N. Alon, Eigenvalues and expanders,Combinatorica,6 (1986), 83–96.

    Google Scholar 

  4. [4]

    B. Bollobás,Extremal graph theory, Academic Press, London 1978.

    Google Scholar 

  5. [5]

    L. E. Dickson, Arithmetic of quaternions,Proc. London Math. Soc. (2)20 (1922), 225–232.

    Google Scholar 

  6. [6]

    M. Eichler, Quaternäre quadratische Formen und die Riemannsche Vermutung für die kongruentz Zeta Funktion,Archiv. der Math. Vol. V, (1954), 355–366.

    Google Scholar 

  7. [7]

    P. Erdős andH. Sachs, Reguläre Graphen gegenebener Teillenweite mit Minimaler Knotenzahl, Wiss. Z. Univ. Halle-Wittenberg,Math. Nat. R. 12 (1963), 251–258.

    Google Scholar 

  8. [8]

    L.Gerritzen and N.Van der Put,Schottky groups and Mumford curves, Springer-Verlag, L. N. in Math. 817 (1980).

  9. [9]

    G.Hardy and E.Wright,An introduction to number theory, Oxford University Press 1978 (Fifth Edition).

  10. [10]

    E.Hecke, Analytische arithmetik der positiven quadratic formen,Collected works pp. 789–898, Göttingen, 1959.

  11. [11]

    A.Hofmann, On eigenvalues and colorings of graphs,in Graph theory and its applications (ed. B. Harris) Academic Press (1970), 79–91.

  12. [12]

    J. Igusa, Fibre systems of Jacobian varieties III,American Jnl. of Math. 81 (1959), 453–476.

    Google Scholar 

  13. [13]

    Y.Ihara, Discrete subgroups of PL (2, k p ),Proc. Symp. in Pure Math. IX, AMS (1968), 272–278.

  14. [14]

    W. Imrich, Explicit construction of regular graphs with no small cycles,Combinatorica 4 (1984), 53–59.

    Google Scholar 

  15. [15]

    H. Kesten, Symmetric random walks on groups,Trans. AMS 92 (1959), 336–354.

    Google Scholar 

  16. [16]

    M. Knesser, Strong approximation in:Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. Vol. IX, (1966), 187–196.

    Google Scholar 

  17. [17]

    A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan conjecture and explicit construction of expanders,Proc. Stoc. 86 (1986), 240–246.

    Google Scholar 

  18. [18]

    A. Lubotzky, R. Phillips, P. Sarnak, Hecke operators and distributing points onS 2 I, IIComm. Pure and Applied Math. 39 (1986), 149–186,40 (1987), 401–420.

    Google Scholar 

  19. [19]

    G. A. Margulis, Graphs without short cycles,Combinatorica 2 (1982), 71–78.

    Google Scholar 

  20. [20]

    Mališev, On the representation of integers by positive definite forms,Mat. Steklov 65 (1962).

  21. [21]

    A. Ogg,Modular forms and Dirichlet series, W. A. Benjamin Inc., New York 1969.

    Google Scholar 

  22. [22]

    S. Ramanujan, On certain arithmetical functions,Trans. Camb. Phil. Soc. 22 (1916), 159–184.

    Google Scholar 

  23. [23]

    J. P. Serre,Trees, Springer Verlag, Berlin-Heidelberg-New York, (1980).

    Google Scholar 

  24. [24]

    M. F.Vignéras,Arithmetique dè Algebras de Quaternions, Springer Lecture Notes; V. 800, (1980).

  25. [25]

    G. L. Watson, Quadratic diophantine equations,Royal Soc. of London, Phil. Trans., A 253, 227–2 (1960).

    Google Scholar 

  26. [26]

    A.Weil, Sur les courbes algébriques et les varétés qui s'en déduisent,Actualites Sci. Et ind. No. 1041 (1948).

  27. [27]

    A. Weiss, Girths of bipartite sextet graphs,Combinatorica 4 (1984), 241–245.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

The work of the second author was supported in part by the NSF under the Grant No. DMS-85-03297 and the third by NSF Grant No. DMS-85-04329.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lubotzky, A., Phillips, R. & Sarnak, P. Ramanujan graphs. Combinatorica 8, 261–277 (1988). https://doi.org/10.1007/BF02126799

Download citation

AMS subject classification (1980)

  • 05C35