Intersection theorems in permutation groups


The Hamming distance between two permutations of a finite setX is the number of elements ofX on which they differ. In the first part of this paper, we consider bounds for the cardinality of a subset (or subgroup) of a permutation groupP onX with prescribed distances between its elements. In the second part. We consider similar results for sets ofs-tuples of permutations; the role of Hamming distance is played by the number of elements ofX on which, for somei, the ith permutations of the two tuples differ.

This is a preview of subscription content, access via your institution.


  1. [1]

    H. F. Blichfeldt, A theorem concerning the invariants of linear homogeneous groups, with some applications to substitution-groups,Trans. Amer. Math. Soc. 5 (1904), 461–466.

    Google Scholar 

  2. [2]

    P. J. Cameron, andM. Deza On permutation geometries,J. London Math. Soc. 20 (1979), 373–386.

    Google Scholar 

  3. [3]

    P. J.Cameron, M.Deza and P.Frankl, Sharp sets of permutations,J. Algebra, to appear.

  4. [4]

    M. Deza, Solution d'une probléme de Erdős et Lovász,J. Combinatorial Theory (B),16 (1974), 166–167.

    Google Scholar 

  5. [5]

    M. Deza, P. Erdős andP. Frankl, On intersection properties of systems of finite sets,Proc. London Math. Soc. 36 (1978), 369–384.

    Google Scholar 

  6. [6]

    M. Deza andP. Frankl, Injection geometries,J. Combinatorial Theory (B),37 (1984), 31–40.

    Google Scholar 

  7. [7]

    M.Deza and P.Frankl, Squashed designs,J. Discr. Comput. Geom., to appear.

  8. [8]

    P. Erdős, A problem on independentr-tuples,Ann. Univ. Sci. Budapest,8 (1965), 93–95.

    Google Scholar 

  9. [9]

    P. Erdős, C. Ko andP. Radó, Intersection theorems for systems of finite sets,Quart. J. Math. Oxford,12 (1961), 313–320.

    Google Scholar 

  10. [10]

    M. Kiyota, An inequality for finite permutation groups,J. Combinatorial Theory (A),27 (1979), 119.

    Google Scholar 

  11. [11]

    M. E. O'Nan, Sharply 2-transitive of permutations,Proceedings of the Rutgers Group Theory Year 1983–198 (ed. M. Aschbacher et al.), 63–67, Cambridge Univ. Press, Cambridge, 1985.

    Google Scholar 

  12. [12]

    H. Wielandt,Finite Permutation Groups, Acad. Pr., New York, 1964.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cameron, P.J., Deza, M. & Frankl, P. Intersection theorems in permutation groups. Combinatorica 8, 249–260 (1988).

Download citation

AMS subject classification (1980)

  • 20B99