, Volume 9, Issue 3, pp 233–243 | Cite as

Sparse color-critical hypergraphs

  • H. L. Abbott
  • D. R. Hare


In this paper we obtain estimates for the least number of edges ann-uniformr-color-critical hypergraph of orderm may have.

AMS subject classifications (1980)

05 C 15 05 C 35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. L. Abbott andL. Moser, On a combinatorial problem of ErdŐs and Hajnal,Can. Math. Bull.,7 (1964), 177–181.Google Scholar
  2. [2]
    H. L. Abbott andD. Hanson, On a combinatorial problem of ErdŐs,Can. Math. Bull.,12 (1969), 823–829.Google Scholar
  3. [3]
    H. L. Abbott andA. Liu, The existence problem for color critical linear hypergraphs,Acta Math. Acad. Sci. Hung.,32 (1978), 273–282.CrossRefGoogle Scholar
  4. [4]
    H. L. Abbott, A. Liu andB. Toft, The enumeration problem for color critical linear hypergraphs,J. Comb. Theory,B29 (1980), 106–115.Google Scholar
  5. [5]
    H. L. Abbott and.A. Liu, On property B of families of sets,Can. Math. Bull.,23 (1980), 429–435.Google Scholar
  6. [6]
    P. Aizley andJ. E. Selfridge, Notices,Amer. Math., Soc.,24 (1977), A-452.Google Scholar
  7. [7]
    J. Beck, On 3-chromatic hypergraphs,Disc. Math.,24 (1978), 127–137.CrossRefGoogle Scholar
  8. [8]
    M. I. Burstein, Critical hypergraphs with minimum number of edges,Bull. Acad. Sci. Georg.,SSR 83 (1976), 285–288 (in Russian).Google Scholar
  9. [9]
    H. L. de Vries, On property B and Steiner systems,Math. Zeit.,53 (1977), 155–159.CrossRefGoogle Scholar
  10. [10]
    G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs,J. Lond. Math. Soc.,27 (1952), 85–92.Google Scholar
  11. [11]
    G. A. Dirac, A Theorem of R. L. Brooks and a conjecture of H. Hadwiger,Proc. Lond. Math. Soc.,17 (1957), 161–195.Google Scholar
  12. [12]
    P. ErdŐs, On a combinatorial problem,Nordisk. Mat. Tidskr.,11 (1963), 5–10.Google Scholar
  13. [13]
    P. ErdŐs, On a combinatorial problem II,Acta Math. Acad. Sci. Hung.,15 (1964), 445–447.CrossRefGoogle Scholar
  14. [14]
    P. ErdŐs, On a combinatorial problem III,Can. Math. Bull.,12 (1969), 413–416.Google Scholar
  15. [15]
    P. ErdŐs andA. Hajnal, Chromatic numbers of graphs and set-systems,Acta Math. Acad. Sci. Hung.,17 (1966), 61–99.CrossRefGoogle Scholar
  16. [16]
    P.ErdŐs and L.Lovász, Problems and results on 3-chromatic hypergraphs, inInfinite and Finite Sets ed. A. Hajnal et. al., North Holland Publishing Co.,1975, 609–627.Google Scholar
  17. [17]
    P. ErdŐs andH. Hanani, On a limit theorem in combinatorial analysis,Pub. Math.,10 (1963), 10–13.Google Scholar
  18. [18]
    F.Everts,Coloring of sets, Ph. D. Thesis, Univ of Colorado, (1977).Google Scholar
  19. [19]
    T. Gallai, Kritishe Graphen I,Magy. Tud. Akad. Kut. Int. Közl.,8 (1963), 165–192.Google Scholar
  20. [20]
    G. Hajós, über eine Konstruktion nichtn-farbharer Graphen, Wiss. Zeit. Martin Luther Univ. Halle-Wittenberg,Math.-Nat. A10 (1961), 116–117.Google Scholar
  21. [21]
    M. Herzog andJ. Schonheim, TheB r property and chromatic numbers of generalized graphs,J. Comb. Theory,B12 (1972), 41–49.Google Scholar
  22. [22]
    D. S. Johnson, On propertyB r,J. Comb. Theory,B20 (1976), 64–66.Google Scholar
  23. [23]
    A.Liu, Some results on hypergraphs,Ph. D. Thesis, Univ. of Alberta, (1976).Google Scholar
  24. [24]
    W. M. Schmidt, Ein kombinatorsches problem von P. Erdös und A. Hajnal,Acta Math. Acad. Sci. Hung.,15 (1964), 373–374.CrossRefGoogle Scholar
  25. [25]
    P. D. Seymour, A note on a combinatorial problem of Erdös and Hajnal,Bull. Lond. Math. Soc.,8 (1974), 681–682.Google Scholar
  26. [26]
    P. D. Seymour, On the two coloring of hypergraphs,Quart. J. Math. Oxford,25 (1974), 303–312.Google Scholar
  27. [27]
    J. Spencer, Coloringn-sets red and blue,J. Comb. Theory,A30 (1981), 112–113.CrossRefGoogle Scholar
  28. [28]
    B.Toft, On color critical hypergraphs, inInfinite and Finite Sets, ed. A. Hajnal et. al., North Holland Publishing Co. (1975), 1445–1457.Google Scholar
  29. [29]
    B. Toft, Color critical graphs and hypergraphs,J. Comb. Theory,B16 (1974), 145–161.Google Scholar
  30. [30]
    D. R.Woodall,Property B and the four-color problem, in “Combinatorics” ed. D. J. A. Welsh and D. R. Woodall, Institute of Mathematics and its Applications, (1972), 322–340.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • H. L. Abbott
    • 1
  • D. R. Hare
    • 2
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada
  2. 2.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations