Communications in Mathematical Physics

, Volume 126, Issue 3, pp 559–573 | Cite as

Quantum mechanical resonance and limiting absorption: The many body problem

  • Andreas Orth


We introduce a notion of quantum mechanical resonance that does not rely on analytic continuation of resolvent or scattering matrix and relate it to slow temporal decay of certain distinguished resonant states. We proceed to prove existence of resonances for the generalized many body Schrödinger operator for a rather large class of potentials containing Coulomb and Yukawa, but also nonsymmetric and nonanalytic potentials with Coulomblike singularities at the origin and certain differentiability and decay properties.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Large Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AC] Aguilar, J., Combes, J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys.22, 269–279 (1971)CrossRefGoogle Scholar
  2. [BC] Balslev, E., Combes, J.M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys.22, 280–294 (1971)CrossRefGoogle Scholar
  3. [AHS] Agmon, S., Herbst, I., Skibsted, E.: Perturbation of embedded eigenvalues in the generalizedN-body problem. Commun. Math. Phys.122, 411–438 (1989)CrossRefGoogle Scholar
  4. [FH1] Froese, R., Herbst, I.: A new proof of the Mourré estimate. Duke. Math. J.49, 1075–1085 (1982)CrossRefGoogle Scholar
  5. [FH2] Froese, R., Herbst, I.: Exponential bounds and absence of positive eigenvalues forN-body Schrödinger operators. Commun. Math. Phys.87, 429–447 (1982/83)CrossRefGoogle Scholar
  6. [Her] Herbst, I.: Exponential decay in the Stark effect. Commun. Math. Phys.75, 197–205 (1980)CrossRefGoogle Scholar
  7. [How] Howland, J.: The Livsic Matrix in perturbation theory. J. Math. Anal. Appl.50, 415–437 (1975)CrossRefGoogle Scholar
  8. [JMP] Jensen, A., Mourré, E., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. Phys. Theor.41, 253–261 (1984)Google Scholar
  9. [Mo] Mourré, E.: Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys.78, 391–408 (1981)CrossRefGoogle Scholar
  10. [Or] Orth, A.: Die mathematische Beschreibung von Resonanzen in Vielteilchen-Quantensystemen. Doctoral Dissertation Frankfurt 1985Google Scholar
  11. [OP] Orth, A., Poerschke, T.: Quantum mechanical resonances and limiting absorption: the two body stark problem. Frankfurt University Preprint (1988)Google Scholar
  12. [PSS] Perry, P., Sigal, I.M., Simon, B.: Spectral analysis ofN-body Schrödinger operators. Ann. Math.114, 519–567 (1981)Google Scholar
  13. [RSIV] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press 1978Google Scholar
  14. [S1] Simon, B.: Resonances inN-body quantum systems with dilation-analytic potentials and the foundation of time-dependent perturbation theory. Ann. Math.97, 247–274 (1973).Google Scholar
  15. [S2] Simon, B.: Resonances and complex scaling: a rigorous overview. Int. J. Quantum Chem.14, 529–542 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Andreas Orth
    • 1
  1. 1.Zentralabteilung für Informatik und Kommunikation der Hoechst A.G.FrankfurtFederal Republic of Germany

Personalised recommendations