Advertisement

Annals of Operations Research

, Volume 63, Issue 2, pp 233–251 | Cite as

A tabu thresholding algorithm for arc crossing minimization in bipartite graphs

  • Vicente Valls
  • Rafael Martí
  • Pilar Lino
Tabu Search

Abstract

Acyclic directed graphs are commonly used to model complex systems. The most important criterion to obtain a readable map of an acyclic graph is that of minimizing the number of arc crossings. In this paper, we present a heuristic for solving the problem of minimizing the number of arc crossings in a bipartite graph. It consists of a novel and easier implementation of fundamental tabu search ideas without explicit use of memory structures (a tabu thresholding approach). Computational results are reported on a set of 250 randomly generated test problems. Our algorithm has been compared with the two best heuristics published in the literature and with the optimal solutions for the test problems, size permitting.

Keywords

Tabu thresholding tabu search arc crossing minimization automatic graph drawing heuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.J. Carpano, Automatic display of hierarchized graphs for computer aided decision analysis, IEEE Trans. Syst., Man, Cybern. SMC-10(1980)705.Google Scholar
  2. [2]
    D. de Werra and A. Hertz, Tabu search techniques: A tutorial and an application to neural networks, OR Spectrum 11(1989)132.Google Scholar
  3. [3]
    P. Eades and D. Kelly, Heuristics for drawing 2-layered networks, Ars Combinatoria 21(1986)89.Google Scholar
  4. [4]
    P. Eades, B. McKay and N.C. Wormald, An NP-complete crossing number problem for bipartite graphs, Working Paper, Department of Computer Science, University of Queensland, Australia (1985).Google Scholar
  5. [5]
    P. Eades and N.C. Wormald, The median heuristic for drawing 2-layered networks, Working Paper, Department of Computer Science, University of Queensland, Australia (1986).Google Scholar
  6. [6]
    F. Glover, Future paths for integer programming and links to artificial intelligence, Comp. Oper. Res. 13(1986)533.CrossRefGoogle Scholar
  7. [7]
    F. Glover, Tabu search: Part I, ORSA J. Comp. 1(1989)190.Google Scholar
  8. [8]
    F. Glover, Tabu search: Part II, ORSA J. Comp. 2(1990)4.Google Scholar
  9. [9]
    F. Glover, Simple tabu thresholding in optimization, Working Paper, School of Business, University of Colorado, Boulder (1992).Google Scholar
  10. [10]
    F. Glover and M. Laguna, Tabu search, in:Modern Heuristic Techniques for Combinatorial Problems, ed. C.R. Reeves (Blackwell Scientific, Oxford, UK, 1993).Google Scholar
  11. [11]
    F. Glover, D. Karney, D. Klingman and A. Napier, A computational study on start procedures, basis change criteria and solution algorithms for transportation problems, Manag. Sci. 20(1974)793.Google Scholar
  12. [12]
    M. Hasan and I.H. Osman, Local search algorithms for the weighted maximal planar layout problem, Int. Trans. Oper. Res. 1 (1994).Google Scholar
  13. [13]
    A. Hertz and D. de Werra, The tabu search metaheuristic: How we used it, Ann. Math. Art. Int. 1(1991)111.CrossRefGoogle Scholar
  14. [14]
    D.S. Johnson, The NP-completeness column: An ongoing guide, J. Algor. 3(1982)97.Google Scholar
  15. [15]
    R. Martí, Técnicas exactas y heurísticas en el diseño automático de redes de plantificación de proyectos, Ph.D. Thesis, Department of Statistics and Operations Research, University of Valencia, Spain (1993).Google Scholar
  16. [16]
    J. Smith and J. Linders, Automatic generation of logic diagrams, in:IEEE Proc. 13th Design Automation Conf., No. 76 (1976) chap. 1098-3c, p. 377.Google Scholar
  17. [17]
    K. Sugiyama, S. Tagawa and M. Toda, Methods for visual understanding of hierarchical system structures, IEEE Trans. Syst., Man, Cybern. SMC-11(1981)109.Google Scholar
  18. [18]
    R. Tamassia, G. Di Battista and C. Batini, Automatic graph drawing and readability of diagrams, IEEE Trans. Syst., Man, Cybern. SMC-18(1988)61.Google Scholar
  19. [19]
    J.N. Warfield, Crossing theory and hierarchy mapping, IEEE Trans. Syst., Man, Cybern. SMC-7(1977)505.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Vicente Valls
    • 1
  • Rafael Martí
    • 1
  • Pilar Lino
    • 2
  1. 1.Departamento de Estadística e Investigación Operativa, Facultad de MatemáticasUniversidad de ValenciaBurjassot (Valencia)Spain
  2. 2.Departamento de Economía Financiera y Matemática, Facultad de Ciencias Económicas y EmpresarialesUniversidad de ValenciaValenciaSpain

Personalised recommendations