A nowhere-zero point in linear mappings


We state the following conjecture and prove it for the case whereq is a proper prime power:

Let A be a nonsingular n by n matrix over the finite field GFqq≧4, then there exists a vector x in (GFq)n such that both x and Ax have no zero component.

This is a preview of subscription content, access via your institution.


  1. [1]

    N.Alon, E. E.Bergmann, D.Coppersmith and A. M.Odlyzko, Balancing sets of vectors,IEEE Transactions on Information Theory, in press.

  2. [2]

    A. E. Brouwer andA. Schrijver, The blocking number of an affine space,J. Combinatorial Theory, Ser. A24 (1978), 251–253.

    Google Scholar 

  3. [3]

    F. Jaeger, Problem presented in the 6th Hungar. Comb. Coll., Eger, Hungary1981, and:Finite and Infinite Sets (eds.: Hajnal, A., Lovász, L., Sós, V. T.). North Holland, Amsterdam, 1982 II, 879.

    Google Scholar 

  4. [4]

    D. J. A. Welsh,Matroid Theory, Academic Press, San Francisco, 1976.

    Google Scholar 

Download references

Author information



Additional information

Research supported in part by Allon Fellowship and by a Bat Sheva de Rothschild grant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alon, N., Tarsi, M. A nowhere-zero point in linear mappings. Combinatorica 9, 393–395 (1989). https://doi.org/10.1007/BF02125351

Download citation

AMS subject classifications (1980)

  • 05 B 35
  • 05 B 25
  • 12 C 05